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Abstract 

The article deals with the determination of measurement uncertainty of strain and stress using 

resistance strain gages. You can find two methods to define the uncertainty in the article, GUF and 

MMC, and both are applied for measurements carried out with resistance strain gages. Definition of 

the measurement uncertainty was set for the strain measured by uniaxial and biaxial strain gages. The 

uncertainty of the stress was defined for linear strain gages, T-rosettes and Rosettes. There were 
universal mathematic-technical models defined to measure strain and stress. These models can be used 

either for standard and special measurements i.e. high-temperature, or for measurements in radiation 

field. Each part of the strain and stress uncertainty is analysed from the point of view of a size and 

shape of probability function error that strain and stress can adopt. The maximum focus was dedicated 

to the errors influencing measured strain like strain gage properties, installation and operating 

influences, external influences, time effects and the influence of the measured object. There are two 

errors influencing the mechanical stress described and analysed in the thesis, the error of the Young’s 

modulus of elasticity and the error of the Poisson’s ratio. 

Abstrakt 

Práce se zabývá stanovením nejistoty měření přetvoření a mechanického napětí pomocí 

odporových tenzometrů. V práci jsou uvedeny dvě metody pro stanovení nejistoty měření. Metody 

GUF a MMC jsou následně aplikovány na měření prováděná odporovými tenzometry. Stanovení 

nejistoty měření bylo provedeno pro přetvoření měřené jednoosými a dvojosými tenzometry. Nejistota 

mechanického napětí byla stanovena pro jednoosé tenzometry, kříže a růžice. Pro měřené přetvoření a 

vypočtené mechanické napětí byly vytvořeny universální matematicko–technické modely, které lze 

následně aplikovat na standardní i speciální měření, jako jsou vysokoteplotní nebo měření v radiačním 
poli. Jednotlivé dílčí složky nejistoty přetvoření a mechanického napětí jsou rozebrány z hlediska 

velikosti chyby a tvaru pravděpodobnostní funkce, které mohou nabývat. Největší důraz byl kladen na 

chyby ovlivňující měřené přetvoření, jako jsou vlastnosti tenzometru, instalace a provozní vlivy, vnější 

a časové vlivy a vliv měřeného objektu. Chyby ovlivňující mechanické napětí jsou uvedeny a rozebrány 

dvě, a to chyba modulu pružnosti a chyba Poissonova čísla. 
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 1 INTRODUCTION 

Resistance tensometry is the key measurement method of the experimental mechanics that 

belongs to the scientific-applicational discipline of the mechanics of bodies. The strain gages are the 

most used sensors for measuring strain (stress), especially for easy-to-get, accuracy, low cost and 

applicability. These days the tensometry is used in most of industries and technical sciences. The role 
of tensometry especially in engineering and civil engineering is irreplaceable. Each measurement 

represents an error and uncertainty of measurement. It is not possible to avoid measurement errors in 

total, but it is required to reduce them on an acceptable value. To define the uncertainty of measurement 

it is necessary to define the main sources of errors and then to quantify them. From the practical point 

of view, it is necessary to consider the error and the uncertainty of measurement for the integral part of 

the measurement and, in most cases, the knowledge of measurement error is more important than the 

result itself. Nowadays the strain and stress are analysed applying numerical modelling. The standard 

of calculation modelling is very high and, with HW and SW development, it has become almost a 

routine process. This technical approach has got several advantages. A higher technical standard and 

effectiveness of processes together with lower cost of research, construction, production and control 

activities are the key ones. Nevertheless, it is necessary to take in mind that no matter how good your 

calculation is, it is a subject to a degree of inaccuracy, and that is why the calculation cannot fully 
substitute an experiment. If we do not verify our results obtained by numerical modelling by an 

experiment, we cannot consider our results credible. 

 2 SITUATION OVERVIEW 

The current level of knowledge of the resistance tensometry is very high, including the strain 
gages error (i.e. article [12] and [13]) and measurements [1], [2], [3]. We can say the same in case of 

the area of the uncertainty of measurement [4], [5], [6], [8]. Nevertheless, it is necessary to remind that 

the resistance tensometry is rather old technical discipline, which roots go back to the beginning of the 

20th century and it keeps developing. On the other hand, the theory of uncertainty of measurement is 

relatively young technical discipline. The uncertainty of strain measurement is partially analysed and 

described in the articles [10] and [11]. 

Nowadays the experimental analysis of strain and stress (engineering, civil engineering 

constructions) plays an irreplaceable role. Even the numerical modelling of strain and stress is applied 

more and more, the data obtained via experiments are also important, especially in case of verification 
of complex calculations. In certain technical areas it is better to perform an experiment than 

calculations. Among these we can name especially prediction of strength, lifetime, operational 

reliability of constructions and devices, and also monitoring of operations and operating status of 

constructions and devices. However, it is necessary to take in mind that each experiment is a subject to 

a degree of inaccuracy. The degree of inaccuracy of measurement can be defined mathematically as 

the uncertainty of measurement that specifies the interval of occurrence of the actual value with a 

certain probability. If we want to use the data collected in experiments to verify the numerical 

modelling methods, it is necessary to define the uncertainty of measured value first (the strain and stress 

in our case). And only after that, it will be possible to carry out a certain interaction of numerical 

modelling and experimenting. The need for knowledge of uncertainty of measurement is fully obvious 

in the other activities as well. If we do not know the value of measurement uncertainty of strain, we 
can hardly declare that the intended prediction or lifetime is credible. 

This article deals with determination and verification of mathematical-technical model of 

measurement uncertainty of strain and stress. There were two methods of uncertainty definition formed 

using strain gages. The Method of Gum Uncertainty Framework (GUF), which is an analytical method 

using the law of spreading uncertainty (see equations 1 and 2) and the method Monte Carlo (MMC) 

based on numerical simulation. The article includes definition of measurement uncertainty of strain 

and stress using linear and biaxial gages (T-rosettes and Rosettes). The article also includes the error 

analysis and analysis of strain and stress measurement accuracy.  
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 3 UNCERTAINTIES OF MEASUREMENTS 

”The uncertainty of measurement is a parameter related to the result of the test (measurement) 

that characterizes interval of values in which the real value is with a certain probability” [8]. The 

measurement uncertainty is part of the measurement result. The technical term (terminus technicus) 

“measurement uncertainty” is a globally recognized expression for describing a value of quality result 
of measurement or calibration in all fields of human activities (i.e. engineering, medicine, chemistry 

atc.). Currently the measurement uncertainty can be defined analytically applying the method GUF (see 

Fig. 1) or numerically by the MMC method (see Fig. 2). From the practical point of view, it is irrelevant 

whether the measurement uncertainty is defined by the GUF or MMC method. It is important, however, 

that the measurement model is compiled well and the characteristics of considered sources, esp. 

considered extreme limits and probability distribution pattern (probability function). 

 

 
Fig. 1 The GUF method principle [4] 

 
Fig. 2 The MMC method principle [5] 

 

Fig. 3 Algorithm of the GUF method [7] 

 
 

 

 

 

 

 

 

 

 

 

Fig. 4 Algorithm of the MMC method [7] 
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 3.1 Uncertainty – GUF method 

The standard uncertainty defined by the GUF method are divided according to the way of 

obtaining the uncertainty into type A (uA) and type B (uB). Both methods are equivalent. The evaluation 

of the uncertainty type A is made by statistic processing of the results of repeated direct measurements. 

The evaluation of the uncertainty type B is based on a qualified estimate based on all information about 
the measured quantity available. To merge both types A and B we obtain the combined standard 

uncertainty (uC). We create an expanded measurement uncertainty U to extend the interval of actual 

measured quantity. It indicates an interval with bigger probability of coverage of actual value. The 

procedure of defining the measurement uncertainty is different for directly and indirectly measured 

quantities [8]. 

The combined standard uncertainty determined by the GUF method is defined, based on the law 

of spreading uncertainty, by the equation 1 for the correlated values and by the equation 2 for 

uncorrelated values. 
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The algorithm (see Fig 3) for defining the combined standard uncertainty uC according to the 
GUF method of direct measurements is the following [8]: 

1. potential sources of uncertainties Z1,…Zi of the measured value X are guessed 

2. estimate standard uncertainty Xi of the measured value X is defined (max. tolerance Zmax) 

3. the standard uncertainty u(xi) is defined from the aquation 3 

  

maxi

i

Z
xu   (3) 

4. the sensitivity coefficients ci (xi) are defined 

5. correlation between defined standard uncertainties u(x1) – u(xi) is considered and the 
correlation coefficients r are determined if required 

6. in case of more than 3 independent measurements, the type B uncertainty uA and other 

additional procedures are defined, see [4] 

7. individual standard uncertainties u(xi) (contributions) are merged into the resulting value, 

and the type B uncertainty uB(x) is defined 

8. the combined uncertainty uc(x) is defined according to the equation 1 or 2 

9. the combined standard expanded uncertainty U of required probability given by 

the equation 4 is defined 

 
cukU   (4) 

Where:  

k  coverage factor [-] 

k = 1 corresponds to the probability of 68.27% 

k = 2 corresponds to the probability of 95.45%  

k = 3  corresponds to the probability of 99.70% 

 The mentioned coeffients are valid for normal probability distribution.  
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The algorithm of the combined uncertainty uc of the GUF method for indirect measurements is 

following:  

1. the measurement model Y and its functional relation of value Y with values X1, Xn is 

defined by equation 5; then the estimate y of the output (measured) quantity is given  

by equation 6 

  nXXXfY ,...,, 21  (5) 

  nxxxfy ,...,, 21  (6) 

2. the standard uncertainty u(xn) – GUF method for direct measurement of the input values 

X1, Xn is defined according to the points 1 – 8 

3. the sensitivity coefficient cn[u(xn)] is defined 

4. correlations between individual standard uncertainties u(x1) – u(xn) is assessed and the 

correlation coefficients r are defined 

5. individual standard uncertainties u(xi) (contributions) are merged into the resulting value;  

the type B uncertainty uB(y) is defined 

6. the combined standard uncertainty uc(y) is defined by equation 1 or 2 

7. the combined expanded uncertainty U of the required estimate is defined by equation 4 

 3.2 The uncertainty – MMC method 

The determination of the uncetainty MMC method is based on a general procedure of the 
numerical solution of physical models carried out by Random repetitive tests. It is a stochastic 

simulation method, which result is processed statistically. The principle of the MMC method is 

generating random or pseudorandom numbers according to the density probability of input values, 

where the output is discrete form of the probability function of output quantity. The phases of 

determining the uncertainty MMC are: defining the mathematical model, simulations, evaluating and 

summarizing the obtained values. Algorithm (see Fig 4) of defining the standard uncertainty uc of the 

MMC method is the following [5]: 

1. forming the mathematical model Y = f(X), where Y is a scalar output variable and X 
represents n of input value. Each Xi is a random value of a density probability g(ξi), where 

ξi is a value of the given quantity. Y is a random variable of a potential value η and a density 

probability g(η) 

2. setting number of repetitions M and the coverage probability p of MMC 

3. generating M of random vectors xr, r = 1,…M by density probability 

4. putting the generated values into the model yr = f(xr) 

5. sorting the values yr in a non-decreasing order. Then the discrete distribution function G is 

defined out of the order of values 

6. the calculation of arithmetic average (average value) 𝑦̅ and of the experimental standard 

deviation given by equations 7 and 8 
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7. defining the coverage interval for Y determined from discreate form of G. We define the 

interval by calculating q = pM first, then [ylow, yhigh] is 100% of the coverage interval for 

Y, where ylow and yhigh = y(r+q). The probabilistically symmetrical interval is r = (M-q)/2,  

where ylow, yhigh is coverage interval [-] 

The uncertainty u(y) of the probability function of output value Y, with normal distribution, is 

defined for the coverage probability of 68.27 as experimental standard deviation by the equation 8. In 

other cases, where the probability distribution of output variable is different but normal, there is 

necessary to calculate the shortest coverage interval of the required coverage probability  
(i.e. p = 68.27%, p = 95.45% etc.) [5], [9]. 

In most cases the repetition value M = 106 should be sufficient for the coverage interval  

of 95%. The no. of repetitions should not drop under M = 104. In case of more difficult calculations 

that might take too much time, the adaptive MMC method can be applied. It follows the convergence 

of uncertainty u(y) of the output quantity (see [6]). 

 4 MEASUREMENT UNCERTAINTY OF STRAIN 

Strain ε is a very small deformation of surface of a material, caused by loading the body. The 

strain gages are used to measure the deformation at or around the point. The deformation measurement 

using strain gages assumes that the deformation of the tested object is transferred to the strain gage 

without loss. In resistance tensometry, the transferred deformation causes a measurable change of 

electrical resistance. The principle of resistance strain gages can be summarized as follows [2]: “If a 

material deforms when loaded, the deformation will also occur on the surface of the material. The 

change is then transferred on the strain gage that changes its resistance, which is linearly proportional 
to the elongation (strain) on the material surface”. 

 4.1 Accuracy of strain measurement 

In the resistance tensometry, the strain ε is a designation for very small deformations. The 
accuracy of the strain measurement by resistance strain gages is based on a fact that the strain gage 

becomes a true sensor (a finished product) only when installed on the measured object. It is extended 

by a fact that the characteristics of the “made sensor” (strain gage) are influenced by the measured 

object, environment in which the object is located, wiring and processing of the sensor signal and the 

influence of time when external influences effect the measured object. To carry out the measurement 

successfully with required accuracy, it is necessary that the user understands well the function of the 

measured object and its properties, select a proper strain gage, design correctly the measuring chain 

and identify all influences during the measurement. Prior to each measurement it is necessary to analyse 

accuracy of measurement, based on which to carefully examine potential errors (disturbances) to be 

eliminated or compensated subsequently. In case it is impossible to eliminate or compensate the errors, 

it is necessary to include them into the measurement uncertainty. 

Frequent phenomenon of the strain measurement is a relatively low required accuracy of the 

measurement. And especially when it is sufficient to measure with error in order of % (sometimes even 

in tens of %!). Another frequent phenomenon is that due to finance it is not possible to make more 

accurate measurements (especially in high-temperature tensometry). Finally, there is a time factor, 

when the experimenter cannot make measurements (processing the acquired data) with the required 

accuracy for time reasons. 

Nevertheless, no matter if the measurement is made with low or high accuracy, it is always 

necessary to include all potential errors into the overall uncertainty, both in compensated and 
uncompensated (objectively negligible effects) form. 
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 4.2 Strain uncertainty 

The strain uncertainty uε can be divided into 5 sub-sources of uncertainties (uε-A till uε-E) which 

are based on signal origins. The main sources of uncertainties can be further divided into individual 

sub-sources based on errors and they have the basic probability distribution.  

See the scheme on Fig. 5. The value of the error and the probability distribution that the errors can have 
are shown in Tab. 1. 

We meet a merge of the term ”uncertainty” and ”error” in the articles [10], [11], and [12]. The 

philosophical-technical approach, that is rather different between authors, is another specific factor 

concerning the uncertainty of tensometry (the strain and stress measurement). Some authors include 

even experimenter’s errors into the strain measurement uncertainties (see [12] and [13]), which 

belongs, according to my opinion, into the category of gross errors. The errors of real location and 

shape of deformation (tension) on the measured object are other errors included into measurement 

uncertainty (see [10]). The error of experimenter and real state of deformation is rather difficult to 

quantify. Although it is possible, in certain cases, to carry out validation experiments or comparison 

with FEM simulation, it is very difficult to correct the mentioned errors during the real measurements 
on complex components. 

The author of the article [12] states that there were more than 70 sources of uncertainties when 

measuring with strain gages. He divides the uncertainties into four main groups: gage, method, 

environment and operator. The author connects most of uncertainties with the experimenter. The errors 

caused by human factor are listed in the Article [13]. The authors of the article [10] describe only 5 

sources of uncertainties (errors), meaning: recording device, transverse sensitivity, temperature effect, 

strain gage misalignment (deflection) and non-linearity of Wheatstone Bridge. The strain uncertainty 

is defined applying the GUF method. The article [11] states the methodology applying the Monte Carlo 

method to estimate measurement uncertainties. There are the following sub-uncertainties considered in 
the mathematical model: the uncertainty of location (deflection from the main axis), integrational effect 

and the transverse sensitivity. The article also includes the errors and properties of welding strain gages. 

The MEBU methodology (numerical Method for the Estimation of Biases and Uncertainties) stated in 

the article enables to define an error (uncertainty) caused by the integration effect, the transverse 

sensitivity and an error caused by the welding method of strain gage. 

 

Fig. 5 Uncertainty sources of measured strain 
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Tab. 1 Properties of uncertainty sources of measured strain - uε 

Uncertainty source Error Distribution - χ 

A Strain gage properties 

1 Gauge factor δK 

According to the used strain 

gage 

(see datasheet) 

Uniform 

2 Gauge factor (temperature) δK100 Uniform 

3 Transverse sensitivity δQ Normal 

4 α strain gage δα Triangular 

 
B Installation and operating influences 

1 
Attachment – adhesive 

δL 
0,5 – 2.5 µm/m 

Uniform 
Attachment – welding 10 - 100 µm/m 

2 Attachment – geometry δG 

1 - 5 µm/m 

for deflection of 5° is equal to 

1.5 % of measured value 

Normal 

3 Attachment – surface δD 1 - 4 µm/m Uniform 

4 Bridge – connection δB   

5 Protective coating δO 0 - 3 µm/m Uniform 

6 Cabling δC 
0 - 10 µm/m 

(0 - 5 µV/V) 
Normal 

7 Acquisition system 
δMJ 

(δMJ-1 - 4) 

1 - 2 µV/V, 1 - 6 µV/V 

4 - 10 µV/V, 10 - 20 µV/V 

Normal 

Uniform 

 
C External influences 

1 Temperature 
δT 

(δεapp) 

5 - 20 µm/m 

(20 - 100 µm/m) 
Triangular 

2 Others δP 

According to external 

environment strain gage is 

located; 

1 - 20 µm/m 

Uniform 

 
D Influence of measured object 

1 Temperature – rate of change δM 

Estimate  

0 - 100 µm/m 

Triangular 

2 Temperature – effect duration δN Uniform 

3 Roughness δR Normal 

4 Curvature δZ Normal 

 
E Time effects 

1 Creep δV 
5 - 20 µm/m 

0.5 - 2% of measured strain 
Uniform 

2 Hysteresis δH 0.25 – 0.5% of measured strain Normal 

3 No. of cycles δU 10 µm/m Uniform 
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 5 MEASUREMENT UNCERTAINTY OF STRESS 

The stress σ and shear stress τ in the form of stress tensor Tσ describe a tension around the 

general point of the body. The body tension depends on shape, load and material properties of the body. 

We divide the tension, according to the number of non-zero stresses in the tensor, on uniaxial, biaxial 

and triaxial.  

The stress is calculated from the measured strain applying the constitutional equations (physical 

relations). The method of the stress calculation utilizes the Hooke’s law (equation 9 [1])  

to calculate the stress. The law is valid only in the field of elastic deformations of material, which are 

bounded by the yield of strength of the specific material Re (Rp0.2). The law is valid only for the uniaxial 

tension. 

 E   (9) 

Mechanical behaviour of isotropic material in the area of elastic deformations is described by 

two independent constants – elasticity modulus E (Young’s module) and Poisson’s ratio  

(coefficient of transverse deformation) µ[16], [17]. 

There are mainly uniaxial and biaxial tension in the field of experimental analysis of strain. The 
uniaxial tension is rather rare, we mostly meet the biaxial tension in two forms: 

1. directions of principal stresses are known (biaxial stress with familiar directions) or 

they are at least assumed 

2. directions of principal stresses are not known (biaxial stress with unknown directions) 

 

Fig. 6 Stress division of experimental analysis of stress and strain gages 

The principal stress σ1 and σ2 gained from the T-rosettes is defined from the measured main 

deformations ε1 and ε2 by the equation 10 and 11. The principal stress (strain) for Rectangular Rosettes 

is defined from the measured deformations in three directions εa, εb and εc by the equation 12 and 13 

[1]. 
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 5.1 Accuracy of mechanical stress measurement 

The accuracy of stress measurement is given by the combination of knowledge of a real value 

of measured strain and the independent material properties of measured object (see Fig. 7). 

 

Fig. 7 Influencing factors of measurement accuracy of the stress  

Defining the stress from measured strain we often assume that we know, or at least we suppose 

a tension on the measured object. Based on the mentioned presumption a type of strain gage is selected 

and then installed on the measured object. In case of measuring on simple objects, where forces on 

object are known, we can assume that the reduction of measurement accuracy do not occur due to an 

action of another state of stress. In case of measuring on complex objects, it could occur that the selected 
methodology (strain gage) does not correspond to the state of stress; then the measurement accuracy 

may decrease. The accuracy may also decrease if, for whatever reason, we know what the state of stress 

will be, but from technical, financial or time reasons we will not measure with adequate strain gages. 

To define the stress the knowledge of material properties of the measured object is expected. 

The elasticity modulus significantly influences the actual chemical composition of the object or the 

thermochemical processing of steel. In practice, we usually meet the situation when the elasticity 

modulus is defined for steel grades and not for individual melting, etc. In case of lower steel grades 

(i.e. 10 and 11) the material composition has rather wide range of tolerance. The situation in case of 

thermochemical processing is also complicated. It is not standard to determine actual values of material 

properties after processing, i.e. quenching or annealing. The above mentioned experience is generally 
known and applied in constructions and using devices. It follows from these findings that the elasticity 

modulus of the measured object is almost always loaded with a certain degree of inaccuracy (error). 

The accuracy of defining the elasticity modulus is given by an error of the determination 

method. The elasticity modulus defined by the tensile-pressure test (or by other methodology) is 

interpreted as a single number (straight line) in the field of elastic deformations. In a fact, such an 

interpretation is only a simplification of the real situation. The difference between methods of 

measurement can reach 3 to 5%. 

In the field of Experimental Stress Analysis defining stress from the measured strain, it is 
contemplated that the values of the elasticity modulus and Poisson’s ratio assigned to equations 9 to 13 

are average values of a certain predicted interval. There is an exception in case of situations when, to 

specify the measurement results, the material properties are defined separately from the measured 

object (of the used material). 
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 5.2 Error of the elasticity modulus and Poisson’s ratio 

The error of the elasticity modulus oscillates between 3 and 15%. The error δE cannot drop under 

the mentioned 3%, by principle of determination. It is very unlikely that the elasticity modulus  

(and the associated error) of the measured object exceeds 9% considering the amount of information 

available about materials in engineering, especially steel and alloys. An average value of the elasticity 
modulus is E = 205 000 MPa and the deviation from low-carbon up to high-alloy steel is stable and 

reaches an average value of ±15 000 MPa, which represents ±7.32%. The drop of the elasticity modulus 

on 50°C represents 1.4 up to 2.1%. These values express the fact, that we can work with an average 

error of ±8 to ±9% considering we have a basic material knowledge of the measured object made of 

steel, which temperature oscillates in the interval of ±25°C. The more information about the elasticity 

modulus of the measured object we have, the minor error of the mentioned ±8 to ±9% we can consider. 

And vice versa, if the material of the measured object is heat-treated, its elasticity modulus changes 

much more than the mentioned ±8 to ±9%. Then, it is necessary to consider the elasticity modulus for 

individual heat treatment and, if the information is not known, to extend the error of the elasticity 

modulus on ±13 to ±14%. [14], [15]. 

Let’s consider a situation that we know the material of the measured object, its heat treatment 
and temperature. Then the elasticity modulus is determined from the relevant charts or the producer’s 

certificate (in case of a higher quality steel). Then the modulus error will depend on its determination 

(if done) or the “authenticity” of material. Let’s consider then that the error of modulus is approximately 

±5 to ±6%. 

An average value of the Poisson’s ratio for steel is μ = 0.285 and it is found in the interval 0.27 

to 0.30. Based on that we can state that the error of Poisson’s ratio δμ is approximately ±5.3%. That is 

why we can assume that the error of Poisson’s ratio will be smaller. 

 5.3 Stress uncertainty 

The uncertainty of linear stress (the linear strain gage) uσn is formed by two sources of 

uncertainty. The strain uncertainty uε and the uncertainty of elasticity modulus uE. The scheme is shown 

on the Fig. 8. The stress uncertainties uσ1, uσ2 (T-rosettes) and uσI and uσII (Rosettes) are formed by three 

sources of sub-uncertainty. The strain uncertainty uε, the uncertainty of elasticity modulus uE and the 
Poisson’s ratio uncertainty uµ. The scheme is shown on the Fig. 9 and Fig. 11. The strain uncertainty 

of the main straight lines uεI and uεII and the uncertainty of angle uφH (Rosettes) is formed by one sub-

source, the strain uncertainty uε. The scheme is shown on the Fig. 10. 

The T-rosettes and Rosettes belong to a group called the multiple strain gages. It means that 

there are two or three measuring grids placed on a pad. It is necessary then to define the strain 

uncertainty for each direction separately. Simultaneously, it is necessary to realize that some sources 

of strain uncertainties shown in Fig 5 are related to the measuring grid (uε-A_1,2,3 and uε-B_4,6,7) and other 

part is related to the strain gage as a sensor. Then the strain uncertainty can be divided into several 

strain uncertainties and each of the adequate direction consists of two parts. The part of the sub-
uncertainties related only to the measured direction and the part of the sub-uncertainties common for 

all directions (for sensor as a whole). The resulting division of probability will be slightly different for 

each strain uncertainty of the corresponding direction. 

The uncertainty of the elasticity modulus uE is given by the error δE for which we consider a 

uniform distribution. The Poisson’s ratio uncertainty uµ is given by the error δµ for which we consider 

a uniform distribution. 
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Fig. 8 Uncertainty sources – linear strain gage (σN) 

 

Fig. 9 Uncertainty sources – T-rosettes (σ1 and σ2) 

 
Fig. 10 Uncertainty sources - Rosettes (εI, εII and angle φH) 

 

Fig. 11 Uncertainty sources – Rosettes (σI and σII) 
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 6 MEASUREMENT UNCERTAINTY OF LINEAR STRAIN - REAL CASE 

Let’s consider laboratory measurement (at room temperature T0) on the steel shaft 12040  

(E = 210 000 MPa) that is not heat treated. The shaft was loaded in the axial direction up to the yield 

strength (Rp0.2 = 370 MPa). There was a strain gage HBM type: 1-LY11-3/120 applied, connected into 

the quarter-bridge. Then the uncertainty of normal stress uσN can be defined applying GUF or MMC 
method. To define the uncertainty, we assume the measured strain ε = 1668.29 µm/m, which 

corresponds to σN = 350.34 MPa and the following input parameters: 

Tab. 2 The input parameters to define measurement uncertainty uσ 

Quantity Estimate (error) Standard uncertainty Probability distribution 

Xi xi (δ) u (xi) χ 

ε - 11.47 µm/m Normal 

E 9% - Uniform 

To define the uncertainty of normal stress uσ type B of the uniaxial strain it is necessary to define 

sensitivity coefficients C (equation 14 and 15) based on the Hooke’s law (see equation 9). 
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 6.1 GUF calculation 

The standard strain uncertainty uε was defined directly by selecting sub-uncertainties  

(see Fig. 5 and Tab. 1). 
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 6.2 MMC calculation 

Tab. 3 Calculated values (statistic parameters) obtained by the MMC simulation 

Average value (y) y 350.35 MPa 

Standard deviation – standard uncertainty u(y) 18.36 MPa 

Shortest coverage interval for 95,45% - low limit ylow 319.81 MPa 

Shortest coverage interval for 95,45% - high limit yhigh 380.78 MPa 

Shortest coverage interval for 95,45% s. c. i. 60.96 MPa 

Shortest coverage interval for 95,45% - [-30.54 ; 30.43] 
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Fig. 12 Probability density function 

 

Fig. 13 Cumulative distribution function 

Where:  

PDF  - probability density function 

CDF - cumulative distribution function 

 6.3 Comparisinon of GUF and MMC 

σN (GUF) = 350.34 MPa [-36.72 ; 36.72]95.45% 

σN (MMC) = 350.35 MPa [-30.54 ; 30.43]95.45% 

Comparing the results of both methods it is obvious, that the coverage interval y ± U for σN 

results 17% less in case of MMC than in case of GUF method. It is given by a choice of the probability 

distribution. The standard uncertainty u(y) is equal for both methods. 

Nevertheless, it is necessary to remind, that the coverage interval and course of PDF and CDF 
will differ according to the chosen model and measured value of strain. It can be assumed, however, 

that, from the physical point of view, the resulting value of PDF and CDF of the stress will be close to 

the uniform distribution of probability. 

 8 CONCLUSIONS 

The presented article provides the analysis and procedure to determine the measurement 
uncertainty of strain and stress by resistance strain gages. There is a mathematical-technical model 

created in the article based on the GUF analytical method (uncertainty type B) and the MMC numerical 

method (Mote Carlo). The created procedure and the information about individual uncertainties provide 

a manual that is enough technically reliable and credible to define measurement uncertainty of strain 

and stress applying the linear strain gages, T-rosettes and Rosettes. The basic idea of defining the 

measurement uncertainty of strain and stress is a combination of understanding the measurement 

accuracy of resistance tensometry, determination of errors and physical properties of quantities 

affecting the tensometric measurement and the subsequent implementation of the acquired values 

according to the theory of measurement of uncertainties. 

The MMC method seems to be a very effective method to define the measurement uncertainty 
of stress. The analysis of a real case of linear strain proved that the results obtained by the GUF and 

MMC method are almost identical, and therefore it is irrelevant which of the method an experimenter 

chooses. More, in case of the MMC method the course of probability functions (PDF and CDF) is 

known, so the resulting behaviour of the measured object can be predicted. Another advantage of MMC 

is the mentioned higher efficiency in comparison with GUF method, especially in case of  

T-rosettes and Rosettes (equation 10 – 13), because there is no determination of sensitivity coefficients, 

which are defined by partial derivations of each variable. Another advantage of MMC method is a 

simultaneous calculation of the stress and measurement uncertainty. 
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