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Abstract 

Miniaturization in field of robotics leads to use of elastic deformation where whole robotic 

device (precise positioning device, micro-gripper, etc.) is build from one piece of material. The 

disadvantage of such specific robotic devices is complicated approach to measure of their movement 

and acting forces. Application of influence of electromagnetic field with parallel resonating circuit 

seems as suitable method for sensing small deflections. This paper describes mentioned method of 

wireless measurement of small deflections of compliant robotic structure. Two structures of one and 

two-component force/displacement sensor are presented as examples using this approach. In the 

paper we are focused to mathematical description of stiffness models which provide basic static and 

dynamical properties of such structures.  

Abstrakt 

Miniaturizácia v oblasti robotiky vedie k využitiu princípov elastickej deformácie kde 

zvyčajne z jedného kusu materiálu je vytvorené celé robotické zariadenie (polohovadlo, uchopovač, 

atď.). Nevýhodou týchto špecifických robotických zariadení je zložitejší spôsob snímania ich 

pohybov resp. pôsobiacich síl. Ako vhodná metóda snímania malých deformácií sa javí využitie 

pôsobenia elektromagnetického poľa v kombinácii s paralelným rezonančným obvodom 

umiestneným na poddajnej robotickej štruktúre. Tento článok popisuje uvedenú metódu 

bezkontaktného snímania malých deformácií pružných kompaktných štruktúr. Ako príklady využitia 

tejto metódy sú uvádzané návrhy jedno a dvoj-zložkového snímača síl resp. posunutia pri ktorých sa 

zameriavame na matematický popis modelu tuhosti, pomocou ktorého je možné určiť základné 

statické a dynamické vlastnosti skúmanej mechanickej štruktúry.  
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 1 INTRODUCTION 

Some robotic tasks connected with manipulation of small objects (dimension of few µm) can 

not enable to use classic constructions of robot mechanics based on assembly from discrete 

mechanical parts, or they are hardly realizable. The solution lies in designing devices which use 

principles of elastic deformation. Compact designs of mechanisms made from the one piece of elastic 

material enable to miniaturize dimensions and to make such structures in small or micro scale range 

[1]. Such types of devices have many advantages like as very high positioning accuracy (better then 

1μm), small or limited volume of the operation space, high frequency of motions (hundreds 
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displacements per second), high stiffness, vacuum compatibility, clean room compatibility with no 

backlash and friction, etc. Between most known applications of compact compliant devices belong 

various types of precise positioning devices, micro-grippers (for manipulation with e.g. optic fibers, 

molecules etc.), mechanical amplifiers (mainly in combination with actuator) and sensors’ 

deformable parts (like as, accelerometers, gyroscopes and force/displacement sensors (include 

measurement of torques or pressures)). These all advantages enable to build high precision sensors 

with wide range of measured data. As example could be mentioned multi-axis force sensor for micro-

robotics applications [2] they can measure forces with resolution up to 5µN with range to 0.5N. Only 

optimal design of deformable part of sensor will not suffice to get sensor with high sensitivity and it 

necessary to include suitable electronic in signal processing and signal calibration. An example is 

high sensitive accelerometer with accuracy 10
-7

 m/s
2
 and with range ±10

-1
 m/s

2
 [3]. 

In general, information about states in mechatronic devices are required for control system, to 

improve selected properties. These are gained from wide range of sensors. Unfortunately, in the case 

of compliant structures, the information about movement (displacement) or acting load are gained by 

single-purpose sensors usually by strain-gauges or by piezoelectric elements [4]. Novel method based 

on electromagnetic principle seems as suitable and universal solution for measurement of small 

displacements or acting loads. In this paper is given basic information about such approach with 

formulation input requirements to design compliant micro-robotic structures. To verification of such 

approach had been designed two simple structures of one and two-component force/displacement 

sensors. Those were chosen for their simple realization, and work on this same principle as micro-

robotic device. In the paper we have focused to mathematical description of their stiffness, with aim 

to get main static, dynamic and modal properties of proposed structures.  

 2 MEASUREMENT OF SMALL DEFORMATIONS 

The information about small deformations in micro-robotic devices expressed as variable of 

displacement, or as function depends on stiffness and acting load (see Eq. (1)) is usually required by 

control system. The compliant structures work as precise positioning devices require strong control 

system. In comparison with conventional manipulators [5], it is not possible to use/analyze so huge 

numbers of data from sensors e.g. located in each joint. Integration of sensors in to compliant 

structure is possible only in limited way. If we are focused to devices in millimeters scale, the 

application of strain-gauges leads to acceptable results. In other side miniaturization lead to 

application of piezoelectric elements integrated directly in structure [4]. Other approach to “measure” 

all movements in structure is based on optimal design of kinematics with reducing number flexure 

joints. Then the pseudo-rigid system is fit into the elaborated framework of multi-body dynamics, in 

particular pre-control in combination with a feedback controller [6]. Between most known methods to 

measure small deformations of micro-robotic devices belong optical sensors based on triangular 

principle. Such sensors are very often used in some experimental platforms, because the diameter of 

laser tip is e.g. 0.75mm. In the case of smaller devices, only CCD cameras are suitable. In other side 

is required image processing and optic lens with minimal deformation of image.  

Developing method of measure small deformations of micro-robotic devices is based on 

electromagnetic principle. The global idea of measurement is expressed like as: Small micro-robotic 

device works under influence of electromagnetic field. The movement (deformation) of structure 

leads to change of electromagnetic field parameters. Such parameters are measured and are depend 

on size of deformation of compliant structure. To verify such approach in our laboratories, the 

method was simplified. This one is based on integrating parallel resonation LC circuit to the 

compliant structure. Such simplification leads to decreasing frequency of peaks (see Fig. 1) what 

represent change of selected parameter of electromagnetic field.  

The satisfaction of some requirements is demanded in design of structures suitable for novel 

approach of contactless and wireless measurement of small deformations. There are two main 

requirements. Material of whole structure should be dielectric with the highest ratio between Yield 
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strength and Young’s modulus and the output / flexural displacement (observed deformation) should 

correspond to parameters of LC circuit (it should be strong parallel). 

Precise positioning devices and deformable parts of sensors work on this same principle. 

Consequently that, as suitable devices for verification of our method will be proposed one and two 

axes force/displacement sensors. Physical model of prototype for initial tests of such type of sensor is 

shown on the Fig. 1. Main parts of proposed sensor are: flexure (in middle, elliptical shape), field 

emitter (construction around flexure) and suitable evaluation electronic. Other components used in 

initial tests are micro-positioning screw (on top, produces input displacement/acting load) and 

calibration force sensor (bottom). Such method of contactless measurement of flexure structure 

displacement with some simulations is described in [7] and [8]. 
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Fig. 1 Physical model of prototype of novel force/displacement sensor (left), the S11 curve 

obtained by measurements (right) 

 3 STIFFNESS MODELING 

Devices works on principles of elastic deformation are modeled and simulated by substitution 

of flexures (joints, hinge and links) by mass-spring-damping system. In miniaturization process the 

influence of mass is minimized. On the other side damping usually depend on properties of used 

material of structure. Only compliance/stiffness depends upon known material properties (like as 

Young’s modulus and Poisson ratio) and geometry of flexure (dimensions and shape).  

To establish a full stiffness model modeling approach in view of deformations (in terms of 

bending, torsion, and tensile/compression) of each component of the mechanism can be executed. 

Such model can be derived effectively by the matrix method under the assumption of Hooke’s law for 

the material [9] and [10]. The basic dependence between external load and deflection is expressed as 

 KuFCFu   (1) 

where: 

u - vector of deflection u=[ux, uy, uz, θx, θy, θz]
T
 (in case of in-plane deflection u=[ux, uy, θz]

T
) 

C - compliance matrix, what is inverse matrix of stiffness K, K=C
-1

  

F - vector of external load F=[Fx, Fy, Fz, Mx, My, Mz]
T
  

Initial step of stiffness models is calculation of the compliance/stiffness of elastic components 

like as joints, hinges and links. It is expected that such flexures are connected by rigid bodies. There 

are several approaches to calculate compliance of flexure element [11] but the common approach is 

use of Castigliano’s theorem [12]: when a body is elastically deformed by a system of loads, the 

deflection at any point P in any direction u is equal to the partial derivative of the strain energy with 

respect to a load at F in the direction u. 

 
F

u





U
 (2) 
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The compliance matrices for most often used compliant hinges are expressed in [11] and [12]. 

These references take into account variable thickness of the joints and its specific shape.  

The compliance matrices of separate flexures are expressed to specific end point (its mean that 

matrix is related to local coordinate system). For calculation of compliance/stiffness matrices of 

whole structure is necessary to transform it to global coordinate system. The transformation matrix 

expressed point located in first coordinate system (B) to second coordinate system (H) is 

 






 


BH

BHBHBH

BH
R

PRR
T

0
 (3) 

where: 

RBH - rotation matrix between coordinate systems 

PBH - position matrix of point in B expressed in reference coordinates H, and it is expressed as 
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According to configuration of compliant structure the whole compliance/stiffness matrix can 

be calculated by relations where (5) is for serial and (6) for parallel configuration. 

  
n

Ti

i

i TCTC *

1

*

11  (5) 

  
n

Ti

i

i TKTK *

1

*

11  (6) 

 3.1 Stiffness of proposed load cell 

The novel method of contactless measurement of small deformations requires design of 

structures with specified restrictions and requirements. One of them is connected with output - 

flexural displacements in particular directions should correspond to parameters of LC circuit, mainly 

the capacitor plates should move strongly in parallel. Consequently that stiffness model has to 

describe movement of point located on the moving plate of capacitor. The dimensions and shape of 

flexure is sketch on the Fig. 2.  

 

Fig. 2 Dimensions of deformable part of load cell 

For simplification of calculations, all lengths are depended on height h and width w of 

proposed load cell. The variables tC and tF are thicknesses between capacitor plates and minimal 

thickness of flexure respectively. The thickness of structure will be labeled as tS. Dimension of 

flexure are: L1=h/2; L2=h/2-tF; L3=h/12; L4=0.0484w; L5=0.05w; L6=w/5-1.4tF; L7=w/5.  

For solving stiffness of proposed load cell to point P is necessary to calculate stiffness of 

flexure (in this case it is curved beam with variable thickness) and then, by (6) express stiffness of 

whole structure to point P. Only in-plane deformations will be taking into account. 
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The simplified function described radius of curved beam R (ϕ) is 
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Function R (ϕ) is piecewise function compound from two straight lines and half of ellipse. 

Distribution of forces and torques in flexure is show in Fig. 3. The plot (Fig. 3 (right)) shown change 

of size of thickness depend on angle ϕ. For simplify symbolic calculation of stiffness will be function 

tF(ϕ) constant. (tF(ϕ)=1.2tF) 

 

Fig. 3 The curved beam element with forces and torque distribution (left), dependence of flexure 

thickness on angle ϕ 

The internal in-plane forces and the moment at any point on R(ϕ) may be expressed as follows  
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The strain energy in the beam can be expressed as 

 
     














 






 











d
I

M

A

F

A

F

E
U

F

F

tL

LL

tL

LL zk

z

k

y

k

x
5.0

arctan

5.0
arctan

222
1

54

1

54
2

1
 (9) 

where: 

Ak - area of cross-section Ak = 1.2tFtS 

Izk - second moment of area about z axis, Izk = (1.2tFtS
3
)/12 

Using Castigliano’s theorem (2), the deformation components can be obtained from (9) as 
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Using equations (8) to (10) and carrying out the indicated partial differentiation and 

integration, the following equation (like (1)) in matrix form is obtained 
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The numerical expression of compliance matrix is 
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Now, it is possible to calculate stiffness/compliance of whole load cell with respect of 

coordinate system in the point P. It is necessary to use two transformation matrices – first only 

rotation matrix (12) where compliance matrix of flexure would transform about π/2, and second 

which transform end point of flexure to point P (13).  
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The compliance matrix to point P is 

 T

FP

T

FFFFPP TTCTTC 00  (14) 

where: 

CF - compliance matrix of flexure (see (1) and (11)) 

Consequently that load cell is build from two flexures connected parallel, the stiffness in point 

P should calculated by (6) as 

 12  PP CK  (15) 

 3.2 Stiffness model of proposed xy-force sensor 

The design of proposed structure of xy force sensor consists of two independent 

parallelograms that deflect independently in two directions (see Fig. 7).  

   

Fig. 4 Proposed compliant structure of sensor (left), geometry of the final design, and orientation of 

local coordinate system in observed points 

Transformation matrices between particular local frames to that the compliance matrices were 

calculated are as follows: 
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Rem.: Orientation of local frame in point O0 is equal with orientation of coordinate system to 

which is calculated compliance matrix of flexure hinge. 

Compliance/stiffness matrix of whole structure to point O7 is expressed as 

          TTT

jjjj

TTT

j

T

j 5745

1

2

1

22

1

234

11

120110112

1

01101233445577 2 TTTCTCTTTCTTTCTTTTTC








  (17) 

From the (7) it is possible to express relevant stiffness coefficients required to calculate output 

displacement of both capacitor plates. It is necessary to remind, that output in y direction is difference 

of displacements between coordinate systems located in points O8 (main movement) and O3 (parasitic 

displacement). Output displacement in x direction is simply relevant displacement of point O6. In the 

Fig. 5 is show deformation of proposed xy-force sensor in y direction. Output displacement in 

direction y is 

 38 yOyOy uuu   (18) 

Numerically expressed (from Fig. 5) is output displacement in y direction of proposed 

force/displacement sensor equal to uy= -1.0551 - -0.0565 = 0.9986mm. From displacement uy is clear 

that potential neglecting of parasitic deformations in point O3 can lead to increased inaccuracy of 

measured results.  

 

Fig. 5 Displacement of proposed xy sensor in y-direction 

 4 CONCLUSIONS 

Novel method of contactless measurement of small distances requires development of new 

structures of force/displacement sensors. Such structures should be designed with respect to careful 

analysis based on various types of mathematical models. In case of sensors of mechanical quantities 

(forces, pressures, distances, etc.) is the knowledge of stiffness very important, because it is in 
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relationship with wide range of sensor properties (deformations, working frequency, dynamical 

properties, etc.). The stiffness models of proposed force/displacement sensors have been derived. 

Such models will be used to other design steps like optimization of dimensions, calculation of 

dynamical characteristics etc. The dependence between acting load (force, torques) stiffness and 

displacement of compliant structure has been indicated. It was shown that parasitic deformations of 

deformable part of sensor have important influence to output displacement, and consequently can not 

be neglected.  
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