No. 2, 2016, vol. LXII article No. 2014

Karel FRYDRÝŠEK^{*}

SIMPLE STATICALLY INDETERMINATE TRUSS (LINEAR, NONLINEAR AND STOCHASTIC APPROACH)

STATICKY NEURČITÁ PŘÍHRADA (LINEÁRNÍ, NELINEÁRNÍ A STOACHASTISKÝ PŘÍSTUP)

Abstract

This contribution deals with simple planar and statically indeterminate pin-connected truss. This truss contains 3 members. The ways and methods of derivations and solutions according to theories of 1st and 2nd order are shown. There are applied linear and nonlinear approaches and their simplifications via Maclaurin's series. Programming connected with stochastic Simulation-Based Reliability Assessment Method (i.e. direct Monte Carlo Method) is used for determination of probabilistic reliability assessment (i.e. calculation the probability that plastic deformation occur in members of truss). Finally, the errors of all approaches are evaluated and compared.

Abstrakt

Tento článek se zabývá jednoduchou, rovinnou a staticky neurčitou příhradovou konstrukcí. Příhrada se skládá z 3 členů. Způsoby a metody odvození a řešení dle teorie prvního a druhého řadu jsou uvedeny. Jsou využity lineární a nelineární přístupy a jejich zjednodušení přes Maclaurinovy řady. Programování spojené se stochastickou metodou Simulation-Based Reliability Assessment (tj. přímá metoda Monte Carlo), je využito pro určení pravděpodobnostního posudku spolehlivosti (tj. vypočet pravděpodobnosti výskytu plastické deformace v příhradě). Nakonec byly porovnány a vyhodnoceny chyby všech přístupů.

Keywords

planar truss, theories of 1st and 2nd order, nonlinearities, force and thermal loading, elasticity, plasticity, Simulation-Based Reliability Assessment (SBRA) Method, probabilistic reliability assessment, error estimation

1 INTRODUCTION

Planar (i.e. 2D) truss structures appear to be the easiest ways of introducing, explaining and solving geometrical and material nonlinearities; see [1], [2] and [3]. In mechanics, for small deformations, tasks of this type (displacements, strains and stresses etc.) can be solved according to the simple 1^{st} order (linear) theory or the more precise but more demanding 2^{nd} order (nonlinear) theory. The application of 1st and 2^{nd} order analysis depends upon the deformation of the structure and/or its components under loading. If the effects of deformations of the structure under loadings are negligible with respects to the equilibrium of external and internal forces, 1^{st} order analysis can be applied. Else if the effects of deformations on equilibrium equations are non-negligible, the response (i.e. solution) should be determined using 2^{nd} order analysis.

^{*} Assoc. Prof., M.Sc., Ph.D., ING-PAED IGIP, Department of Applied Mechanics, Faculty of Mechanical Engineering, VŠB–Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic, tel. (+420) 59 732 3495, e-mail karel.frydrysek@vsb.cz

The 2nd order theory always leads to a nonlinear equation or nonlinear equations which can be solved via several numerical methods. However, there are some possibilities for simplifying it, for example via a Maclaurin series etc. It can then be solved easily and directly with small acceptable error.

Hence, if there are some suitable possibilities to obtain simple solutions of complicated problems, the stochastic approach (such as direct Monte Carlo Method, Simulation-Based Reliability Assessment (SBRA) Method, probabilistic assessment etc.) can also be easily applied. The SBRA Method is a fairly popular and modern trend in mechanics. Hence, a probabilistic reliability assessment can also be performed. For more information see [4], [5], [6] and [7].

This article presents a solution of a simple (2D) statically indeterminate pin-connected truss consisting of three members (i.e. derivation according to the 1^{st} and 2^{nd} order theories, possible simplifications, ways of solution, error estimation) together with their probabilistic inputs, outputs (histograms) and reliability assessment (i.e. calculating the probability that plastic deformation will occur in members of the truss). Finally, the errors of both approaches are evaluated.

2 SIMPLE PIN-CONNECTED TRUSS CONSISTING OF THREE MEMBERS (STATICALLY INDETERMINATE)

The simple pin-connected planar truss consisting of three members is loaded by vertical force F [N] and by temperature increasing $\Delta_t = t_1 - t_0 > 0$ [K] or [°C]; see Fig. 2.1. The material of the members is isotropic, linear and elastic. The truss is loaded in a force-controlled and temperature-controlled manner.

Initially, members "1" and "2" of the truss are in an ideal horizontal position with initial temperature t_0 [K] or [°C], and the deformed shape is caused by added force F and temperature t_1 [K] or [°C]; see Fig. 2.1.

Fig. 2.1 Simple pin-connected truss (statically indeterminate) consisting of three members (loaded by force F and by uniform temperature increasing Δ_t)

Expressions are derived for angle α [rad], normal forces N_i [N], axial stresses σ_i [Pa], elongations Δ_i [m] in all members i = 1, 2 and 3 and vertical displacement v_A [m] according to the theory of small deformations for 1st and 2nd order analyses. The given inputs are force F, length of members L₁ and L₃ [m], modulus of elasticity $E_1 = E_2$ and E_3 [Pa] of the material of the members, area of the cross-sections $A_1 = A_2$ and A_3 [m²] of the members, global temperature increasing Δ_t and coefficient of thermal expansion $\alpha_{t1} = \alpha_{t2}$, α_{t3} [K⁻¹] or [°C⁻¹]. Hence, the angle α is unknown and is connected with the deformed structure. By applying the Method of Joints at point "A" of the deformed structure (2nd order theory; see Fig.2.2b), the equations for normal forces can be derived as

$$N_{1} \cos \alpha^{*} - N_{2} \cos \alpha^{*} = 0$$

$$\Rightarrow N_{1} = N_{2},$$

$$N_{1} \sin \alpha^{*} + N_{2} \sin \alpha^{*} + N_{3} - F = 0$$

$$\Rightarrow 2N_{1} \sin \alpha^{*} + N_{3} - F = 0.$$
(2.1)

Fig. 2.2 Normal forces (theory of 1st and 2nd order)

Let is the value of angle α^* small. Hence $\alpha^* = 0$ (i.e. the angular changes are neglected, $\sin \alpha^* = 0$ and $\cos \alpha^* = 1$; see Fig.2.2a; is substituted in eq. (2.1) the simple formulas for the **theory of 1st order** can be derived. Hence, $N_3 = F$ and the members "1" and "2" do not change their length (i.e. deformation boundary condition $\Delta_1 = \Delta_2 = \frac{N_1 L_1}{E_1 A_1} + \alpha_{t1} \Delta_t L_1 = 0 \implies$ $N_1 = N_2 = -\alpha_{t1} \Delta_t E_1 A_1$).

The elongation of member "3" is equal to movement of point "A". Thus $v_{\rm A} = \Delta_3 = \frac{N_3 L_3}{E_3 A_3} + \alpha_{13} \Delta_{\rm t} L_3 = \left(\frac{N_3}{E_3 A_3} + \alpha_{13} \Delta_{\rm t}\right) L_3.$

According to the **theory of 2^{nd} order**, for the solution of this statically indeterminate structure, two deformation boundary condition should be added. These conditions follows from right-angled triangle A, A^* , B; see Fig. 2.3.

Fig. 2.3 Deformation boundary conditions (theory of 2nd order)

Hence
$$\cos \alpha^* = \frac{L_1}{L_1 + \Delta_1} = \frac{L_1}{L_1 + \frac{N_1 L_1}{E_1 A_1} + \alpha_{t1} \Delta_t L_1} \Rightarrow$$

$$N_1 = N_2 = \frac{E_1 A_1 \left[1 - \left(1 + \alpha_{t1} \Delta_t \right) \cos \alpha^* \right]}{\cos \alpha^*}$$
(2.2)

(2.3)

and $\tan \alpha^* = \frac{v_A}{L_1} = \frac{\Delta_3}{L_1} = \frac{\frac{N_3 L_3}{E_3 A_3} + \alpha_{t3} \Delta_t L_3}{L_1} \Rightarrow$ $N_3 = E_3 A_3 \left(\frac{L_1}{L_3} \tan \alpha^* - \alpha_{t3} \Delta_t\right).$

Equations (2.2) and (2.3) can be substituted into (2.1). Hence, after simplification, the following nonlinear dependence can be derived; see eq. (2.4).

$$\left(2E_{1}A_{1}\left[1-(1+\alpha_{t1}\Delta_{t})\cos\alpha^{*}\right]+\frac{E_{3}A_{3}L_{1}}{L_{3}}\right)\tan\alpha^{*}-F-\alpha_{t3}\Delta_{t}E_{3}A_{3}=0$$
(2.4)

Finally, the solution according to the 1^{st} order theory and 2^{nd} order theory is given in the Tab. 2.1.

Tab. 2.1 Results of the theory of small deformations (1st and 2nd order theory)

Note that the same results as written in Tab. 2.1 can be derived in many other ways. One of these ways is based on the minimum of total potential energy Π [J] of the truss (i.e. on equation $\frac{\partial \Pi}{\partial \alpha^*} = 0).$

Another example (i.e. statically determinate truss) is presented in reference [3].

3 SIMPLE NUMERICAL SOLUTION

For the theory of 2^{nd} order, a reasonably good initial estimate of angle α^{*} (i.e. α^{*}_{0}) can be derived by simplification via a Maclaurin series where $\tan \alpha^* \approx \alpha_0^*$ and $\cos \alpha^* \approx 1 - \frac{\alpha_0^{*2}}{2}$. Hence, trigonometric eq. (2.4) can be simplified into polynomial equation

$$\alpha_{0}^{*3} + \frac{E_{3}A_{3}L_{1} - 2E_{1}A_{1}\alpha_{t1}\Delta_{t}L_{3}}{E_{1}A_{1}L_{3}(1 + \alpha_{t1}\Delta_{t})}\alpha_{0}^{*} - \frac{F + \alpha_{t3}\Delta_{t}E_{3}A_{3}}{E_{1}A_{1}(1 + \alpha_{t1}\Delta_{t})} = 0.$$
(3.1)

Cubic eq. (3.1) can be solved via Cardano's formula; see [8]. Because the discriminant

$$\overline{\mathbf{D}} = \left(\frac{\mathbf{F} + \alpha_{t3}\Delta_{t}E_{3}A_{3}}{2E_{1}A_{1}\left(1 + \alpha_{t1}\Delta_{t}\right)}\right)^{2} + \left(\frac{E_{3}A_{3}L_{1} - 2E_{1}A_{1}\alpha_{t1}\Delta_{t}L_{3}}{3E_{1}A_{1}L_{3}\left(1 + \alpha_{t1}\Delta_{t}\right)}\right)^{3} > 0,$$
(3.2)

the eq. (3.1) has only one real root

$$\alpha_0^* = \sqrt[3]{\frac{\mathbf{F} + \alpha_{13}\Delta_t E_3 A_3}{2E_1 A_1 \left(\mathbf{1} + \alpha_{11}\Delta_t\right)} + \sqrt{\mathbf{D}}} + \sqrt[3]{\frac{\mathbf{F} + \alpha_{13}\Delta_t E_3 A_3}{2E_1 A_1 \left(\mathbf{1} + \alpha_{11}\Delta_t\right)} - \sqrt{\mathbf{D}}} .$$
(3.3)

isolating trigonometric From eq. (2.4) function follows $tan \alpha$) $\tan \alpha^* = \frac{\mathbf{F} + \alpha_{t3} \Delta_t E_3 A_3}{2E_1 A_1 \left[1 - \left(1 + \alpha_{t1} \Delta_t \right) \cos \alpha^* \right] + \frac{E_3 A_3 \mathbf{L}_1}{\mathbf{L}_2}}$ and derived then can be $\alpha^* = atan(\frac{\mathbf{F} + \alpha_{13}\Delta_{1}E_{3}A_{3}}{2E_{1}A_{1}\left[1 - (1 + \alpha_{11}\Delta_{1})\cos\alpha^*\right] + \frac{E_{3}A_{3}L_{1}}{L_{2}})$

Thus, the iterative scheme with recursive relation (i.e. the application of the Fixed Point Iteration Method) can be derived as

$$\alpha_{j+1}^{*} = atan(\frac{F + \alpha_{13}\Delta_{t}E_{3}A_{3}}{2E_{1}A_{1}\left[1 - (1 + \alpha_{11}\Delta_{t})\cos\alpha_{j}^{*}\right] + \frac{E_{3}A_{3}L_{1}}{L_{3}}}),$$
for j = 0, 1, 2, (3.4)

Hence, with small and acceptable error (for small deformations, according to the 2nd order theory), a good solution can be written as $\alpha \cong \alpha_1^*$, i.e.

$$\alpha^* \cong atan(\frac{\mathbf{F} + \alpha_{13}\Delta_t E_3 A_3}{2E_1 A_1 \left[1 - \left(1 + \alpha_{11}\Delta_t \right) \cos \alpha_0^* \right] + \frac{E_3 A_3 L_1}{L_3} \right)$$
(3.5)

Correctness of the derived results (i.e. their error) can be checked via Pythagoras' theorem too, i.e. $(L_1 + \Delta_1)^2 = v_A^2 + L_1^2$; see Fig.2.3.

4 PROBABILISTIC INPUTS

For a solution using a stochastic approach, calculating the probability that plastic deformation will occur and performing a probabilistic reliability assessment, the probabilistic inputs must be defined; see Tab. 4.1 and 4.2. Anthill software (i.e. the SBRA Method, direct Monte Carlo approach) was applied in this stochastic modelling; see references [4], [5], [6], [7], [9], [10], [11] and [12].

Tab. 4.1 Stochastic inputs and their basic characteristics (simple pin-connected truss, statically indeterminate, Anthill 2.6 software)

Random inputs	Description	Histogram applied in Anthill software	Min.	Max.	Median	Mean
L ₁ [m]	Length of members "1" and "2"	"Uniform" distribution	0.95	1.05	1	1
L ₃ [m]	Length of member "3"	"Uniform" distribution	2.90	3.1	3	3
<i>E</i> ₁ [Pa]	Modulus of elasticity of members "1" and "2"	Modified (truncated) normal distribution 2.08×10 ¹¹ *"n1-05.dis"	1.976×10 ¹¹	2.184×10 ¹¹	2.080×10 ¹¹	2.080×10 ¹¹
<i>E</i> ₃ [Pa]	Modulus of elasticity of member "3"	Modified (truncated) normal distribution 2.08×10 ¹¹ *"n1-05.dis"	1.976×10 ¹¹	2.184×10 ¹¹	2.080×10 ¹¹	2.080×10 ¹¹
$A_1 [{ m m}^2]$	Area of cross- section of members "1" and "2"	Modified (truncated) normal distribution 0.022*"n1-05.dis"	0.0209	0.0231	0.0220	0.0220
<i>A</i> ₃ [m ²]	Area of cross- section of member "3"	Modified (truncated) normal distribution 2×10 ⁻³ *"n1-04.dis"	0.002016	0.002184	0.0021	0.0021
F [N]	External vertical force acting in joint "A [*] "	Modified (truncated) dead distribution 550000*"dead1.dis"	449900	550000	500147	499950

Tab. 4.2 Stochastic inputs and their basic characteristics (simple pin-connected truss,	statically
indeterminate, Anthill 2.6 software)	

Random inputs	Description	Histogram applied in Anthill software	Min.	Max.	Median	Mean
R _p [MPa]	Yield limit for material of members "1", "2" and "3"	Measurement for A36-M steel (truncated user defined distribution) "a36-m-cont.dis"	248	500	338.29	339.15
t ₀ [°C]	Initial temperature of members "1", "2" and "3"	"temperature-t0.dis", user defined	-8	27	9.820	9.755
t ₁ [°C]	Initial temperature of members "1", "2" and "3"	"temperature-t1.dis", user defined	10	30	20.181	20.144
α _{t1} [^o C ⁻¹]	Coefficient of thermal expansion of members "1" and "2"	Modified (truncated) normal distribution 1.2e-5*"n1-05.dis"	1.14×10 ⁻⁵	1.26×10 ⁻⁵	1.2×10 ⁻⁵	1.2×10 ⁻⁵
α _{t2} [°C ⁻¹]	Coefficient of thermal expansion of member "3"	Modified (truncated) normal distribution 1.2e-5*"n1-05.dis"	1.14×10 ⁻⁵	1.26×10 ⁻⁵	1.2×10 ⁻⁵	1.2×10 ⁻⁵
$P_{ALLOWABLE} = 4 \times 10^{-4} = 0.04$ % is the allowable working probability that plasticity will occur in members "1", "2" or "3"						

Thirteen chosen probabilistic inputs (i.e. mutually independent variables) of random type, and their notation via histograms, are shown in Tab. 4.1 and 4.2. These random variables cover real variabilities and fluctuations in technical practice for the truss presented here.

Tab. 4.1 and 4.2 presents all basic statistical information (i.e. minimum, maximum, median and mean values) and histograms. In Anthill software, the histogram "Uniform" means truncated uniform distribution, "n1-04.dis" means truncated normal distribution $\pm 4\%$, "n1-05.dis" means truncated normal distribution $\pm 5\%$, "dead1.dis" means dead load truncated distribution $\frac{+0\%}{-18.9\%}$, "a36-m-cont.dis" means asymmetric yield stress truncated distribution for carbon steel A36, "temperature-t0.dis" means truncated and asymmetric user distribution $\frac{+174.95\%}{-181.47\%}$ and "temperature-t1.dis" means truncated and asymmetric user distribution $\frac{+48.65\%}{-50.45\%}$; see [5], [6] and [9].

Thus, the given stochastic inputs are used to calculate the stochastic outputs Δ_{t} , $\alpha_{}$, v_{A} , $N_{1,2,3}$, $\sigma_{1,2,3}$, and $\Delta_{1,2,3}$ via histograms and distributed functions, as presented in Tab. 4.1 and 4.2. All calculations are performed and evaluated for $N_{TOTAL} = 10^7$ Monte Carlo random simulations.

5 PROBABILISTIC OUTPUTS

The stochastic (probabilistic) results (i.e. stochastic outputs), see Tab. 5.1 and 5.2, can be used for the probabilistic reliability assessment of the solved truss (Anthill software, SBRA Method; see [5], [6] and [9]).

Tab. 5.1 Stochastic outputs and their basic characteristics (simple pin-connected truss, sta	atically
indeterminate, Anthill 2.6 software, result of 10 ⁷ Monte Carlo random simulations)	

Stochastic outputs		Description	Min.	Max.	Median	Mean
$\Delta_t [^{o}C]$	Uniform ten	nperature increasing 1 st and 2 nd order 10.36+27.63	-16.81	37.99	10.36	10.39
		1 st order "0"	0	0	0	0
* [rad]	Angle in deformed structure	2 nd order 0.00384+0.00172	0.00242	0.00563	0.00384	0.00384
v _A [m]	Displacement of point"A"	1 st order 0.00343+0.00075 -0.00063 Mem 0.003407 Mem 0	2.801	4.185	3.433	3.435
		2 nd order 0.00384 ^{+0.00157} -0.00137 weier Parsar Marken 0.00389 Marken	2.467	5.411	3.835	3.839
N _{1,2} [N]	Normal forces in members "1" and "2"	1 st order -568579.3 ^{+1530731.8} weier furnise Herris 2012 000 00000000000000000000000000000	-2249521	962152	-568579	-570649
		2 nd order -534767.9 ^{+1518738.7} weim Parder -534767.9 ^{+1518738.7} Maeric Schull 20200 Observed - 002610000 Maeric Schull 20200 Observed - 002600 Maeric Schull 20200 Maeric Schull 20200 Maeric Schull	-2191715	983971	-534768	-536583

Tab. 5.2 Stochastic outputs and their basic characteristics (simple pin-connected truss, static	ally
indeterminate, Anthill 2.6 software, result of 10 ⁷ Monte Carlo random simulations)	

Stochastic outputs		Description	Min.	Max.	Median	Mean
N OF	Normal force in member "3"	1st order $5 \times 10^5 \pm 50000$	449900	550000	500147	499950
7v ₃ [1 v]		2 nd order 504278.2 ^{+64637.7} ************************************	445625	568916	504278	504307
σ _{1,2} [MPa]	Stresses in members "1" and "2"	1 st order -25.845 ^{+69.006} Venter 0/010 ¹⁰ Name 0/010 ¹⁰ Venter 0/010 ¹⁰ Ve	-99.53	43.16	-25.85	-25.94
		2 nd order -24.308 ⁺ 68.374 Versee grow and a state of the state of	-96.95	44.07	-24.31	-24.39
σ3 [MPa]	Stress in member "3"	1 st order 238.068+34.271 Verse 249.068+31.755 New 239.117120 New	206.31	272.34	238.07	238.11
		2 nd order 240.137 ^{+38.767} -33.749 Venter Window Province Control	206.39	278.90	240.14	240.19

Negative values of $N_1 = N_2$ and $\sigma_1 = \sigma_2$ mean compression state of loading. However, in this case, there can be tensile or compression states in members "1" and "2"; see Tab. 5.1 and 5.2.

In this case, the reliability functions R_{Fi} [MPa] can be defined as

$$R_{F1} = R_{\rm P} - |\sigma_1|$$
, $R_{F3} = R_{\rm P} - \sigma_2$. (5.1)

Fig. 5.1 Probabilistic reliability assessment for members "1" and "2" (SBRA Method, simple pinconnected truss, statically indeterminate, Anthill 2.6 software, result of 10⁷ Monte Carlo random simulations)

Fig. 5.2 Probabilistic reliability assessment for member "3" (SBRA Method, simple pin-connected truss, statically indeterminate, Anthill 2.6 software, result of 10⁷ Monte Carlo random simulations)

The reliability functions (i.e. 2D histograms $|\sigma_i|$ vs. R_p and σ_3 vs. R_p) are presented in Fig. 5.1 and 5.2. Hence, it is evident that if $R_{Fi} > 0$ (i.e. yield limit R_p is greater than positive value of normal stress σ_i), the stress is below the yield limit (safe loading, no plasticity occurs). Otherwise, if $R_{Fi} \le 0$, then plasticity occurs (i.e. an unsafe and undesirable situation); see Fig. 5.3.

Fig. 5.3 Stress-strain diagram of material – definition of safe and unsafe structure

6 PROBABILISTIC RELIABILITY ASSESSMENT

The probability P_f of an unsafe situation (i.e. a situation when $R_{Fi} \le 0$) is calculated in Anthill software by the expression

$$P_f = \max(P_{fi}), \text{ where } P_{fi} = P_{\left(\substack{R_{Fi} \le 0\\}\right)} = \frac{N_{fi}}{N_{TOTAL}}$$
 (6.1)

. .

and where N_{fi} is the number of unfavorable states (i.e. states when $R_{Fi} \le 0$) and, in our case, N_{TOTAL} = 10⁷ Monte Carlo random simulations.

In the case of 1^{st} order theory, from the presented results it is calculated that $P_f = P_{f2} = P_{f3} = 2.6444 \times 10^{-4}$ (i.e. approx. 0.0264% of all possible random simulations cause plastic deformations).

In the case of 2^{nd} order theory, from the presented results it is calculated that $P_f = P_{f2} = P_{f3} = 4.7938 \times 10^{-4}$ (i.e. approx. 0.0479% of all possible random simulations cause plastic deformations).

Finally, the probabilistic reliability assessment can be performed by checking the inequation

$$P_{f} \leq P_{ALLOWABLE}.$$
(6.2)

In the case of 1^{st} order theory, the inequation (6.2) is fulfilled (i.e. $2.6444 \times 10^{-4} < 4 \times 10^{-4}$); the solved truss therefore satisfies the probabilistic reliability condition.

However, in the case of 2^{nd} order theory, the inequation (6.2) is not fulfilled (i.e. $4.7938 \times 10^{-4} > 4 \times 10^{-4}$); the solved truss therefore does not satisfy the probabilistic reliability condition.

There is possible to calculate percentage error of calculations $\Delta_{\%}$ [%], for example, by comparing median values of the results from the theory of 2^{nd} and 1^{st} order (Tab. 5.1 and 5.2). Thus

$$\Delta_{\%} = 100 \frac{value_{2nd order} - value_{1st order}}{value_{2nd order}}.$$
(6.3)

From calculated results is obvious the legitimacy application of the theory of 2^{nd} order which gives results close to the reality. Some errors of the theory of 1^{st} order are alarming; see Tab. 6.1.

Tab. 6.1 Errors of the theory of 1st order in comparing with the theory of 2nd order (simple pinconnected truss, statically indeterminate)

Description	⊿ _% [%]
Error of median values for angle α^* according to the theory of 1 st order	100
Error of median values for displacement v_A according to the theory of 1 st order	10.48
Error of median values for normal forces $N_1 = N_2$ according to the theory of 1 st order	-6.32
Error of median values for normal force N_3 according to the theory of 1 st order	0.82
Error of median values for stresses $\sigma_1 = \sigma_2$ according to the theory of 1 st order	-6.32
Error of median values for stress σ_3 according to the theory of 1 st order	0.86
Error of median values for probability of unsafe state P_{f1} according to the theory of 1^{st} order	0
Error of median values for probability of unsafe state $P_f = P_{f2} = P_{f3}$ according to the theory of 1 st order	44.84

3 CONCLUSIONS

It is a fact that, the planar truss structures appear to be the easiest ways of introducing, explaining and solving geometrical and material nonlinearities (in this case, a simple pin-connected and statically indeterminate truss of three members). The focus is on the understanding, step-by-step derivation, applications, possible simplifications, programming and solution of nonlinear problems which are widely applied mostly by civil and mechanical engineers. The solutions according to the 2^{nd} order theory always lead to a set of nonlinear equations. However, there are possibilities to solve such a task directly via iterative approaches, or to linearize and simplify it (via a Maclaurin series in this case) and then to solve it easily with only small errors. Simplifying a relatively complicated nonlinear set of equations usually enables a relatively easy application. The stochastic approach (direct Monte Carlo Method, Simulation-Based Reliability Assessment (SBRA) Method, probabilistic reliability assessment) is a modern, quite popular trend in mechanics. Hence, the SBRA Method (i.e. stochastic inputs and outputs) was applied in order to determine the probability that plastic deformations will occur in the structure. Finally, a probabilistic reliability assessment was performed by checking the inequation $P_f \leq P_{ALLOWABLE}$ (i.e. the probability that plastic deformation will occur).

In the case of 1^{st} order theory (i.e. linear solution), the solved truss satisfies the probabilistic reliability condition. However, in the case of 2^{nd} order theory (i.e. nonlinear solution), the solved truss does not satisfy the probabilistic reliability condition). Hence, from calculated results is obvious the legitimacy application of the theory of 2^{nd} order which gives results close to the reality. Some mentioned errors of the theory of 1^{st} order are alarming.

This article was supported by the Czech project SP2016/145.

REFERENCES

- [1] BAŽANT, Z.P., CEDOLIN, L. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, Oxford University Press, New York, 1991, 3rd ed., 2010, pp. 1-1011
- [2] DUNAISKI, P., GALISHNIKOVA, V., PAHL, P.J. Geometrically Nonlinear Analysis of Plane Trusses and Frames, ISBN 9781920109486, AFRICAN SUN MeDIA, 2009, pp. 1-382.

- [3] FRYDRÝŠEK, K. Basic Strength and Elasticity of Materials, ISBN 978-80-248-3870-0, Faculty of Mechanical Engineering, VŠB–Technical University of Ostrava, Ostrava, Czech Republic, 2016, pp. 1-264.
- [4] FRYDRÝŠEK, K. Probabilistic Approaches Applied in the Solution of Problems in Mining and Biomechanics, In: *ENGINEERING MECHANICS 2011*, pp. 151-154, Svratka, 2011, ISBN 978-80-87012-33-8.
- [5] MAREK, P., BROZZETTI, J., GUŠTAR, M., TIKALSKY, P. et al. Probabilistic Assessment of Structures Using Monte Carlo Simulation Background, Exercises and Software, (2nd extended edition), ISBN 80-86246-19-1, ITAM CAS, Prague, Czech Republic, 2003, pp. 1-471.
- [6] MAREK, P., GUŠTAR, M., ANAGNOS, T. et al. Simulation-Based Reliability Assessment for Structural Engineers, CRC Press, Boca Raton, USA, 1995, ISBN 0-8493-8286-6, pp. 1-365.
- [7] LOKAJ, A., KLAJMONOVÁ, K. A Probability Assessment of the Carrying Capacity of Round Timber Joints, In: Advances in Civil Engineering and Building Materials IV - Selected and Peer Reviewed Papers from the 2014 4th International Conference on Civil Engineering and Building Materials, CEBM, 2014, ISBN 978-113800088-9, pp 373-378.
- [8] BARTSCH, H.J. Handbook of Mathematical Formulas, Academic Press, New York, NY, 1974, ISBN: 978-0-12-080050-6, pp. 1-525, http://dx.doi.org/10.1016/B978-0-12-080050-6.50001-4.
- [9] http://www.sbra-anthill.com/
- [10] LOKAJ, A., MAREK, P. Simulation-Based Reliability Assessment of Timber Structures, In: Proceedings of the 12th International Conference on Civil, Structural and Environmental Engineering Computing, ISBN 978-190508830-0, Funchal, Madeira, Portugal, 2009, pp. 1-18.
- [11] TVRDÁ, K. Probability and Sensitivity Analysis of Plate, *Applied Mechanics and Materials*, vol. 617, Svratka, Czech Republic, 2014, ISBN 978-3-03835-197-9, ISSN 1660-9336, pp. 193-196, DOI: 10.4028/www.scientific.net/AMM.617.193.
- [12] ECSI, L., JANČO, R., ELESZTOS, P. An Improved Thermal-Structural Finite Element Model for Manufacturing Processes with Heat Generation, *ENGINEERING MECHANICS 2014*, 20th International Conference on Engineering Mechanics, 2014, ISBN 978-80-214-4871-1, ISSN 1805-8248, pp. 156-159.