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Abstract

This article is focused on the widely spread theory of straight and curved beams rested on
elastic (Winkler's) foundation. For solution of these problems of mechanics, the Finite Difference
Method (i.e. Central Difference Method) can be applied. The basic information about finite
differences and their application are explained. This article also mentioned a new research in
nonlinear behaviour of elastic foundation. Practical examples (i.e. beams with constant or variable
stiffness of foundation or nonlinear foundation) are explained and solved (Matlab software).

Abstrakt

Tento ¢lanek je zaméfen na Siroce rozsifenou teorii pfimych a kiivych nosnikidl lezicich na
pruzném (Winklerov€) podkladu. Pro feSeni téchto uloh mechaniky, mtze byt pouZita metoda
kone¢nych diferenci (tj. metoda centralnich diferenci). Zakladni informace o koneénych diferencich a
jejich aplikacich jsou vysvétleny. Tento ¢lanek také zminiuje novy vyzkum v oblasti nelinearniho
chovani pruzného podlozi. Praktické ptiklady (tj. nosniky s konstantni nebo proménlivou tuhosti
podlozi nebo nelinearnim podlozim) jsou vysvétleny a feSeny (program Matlab).
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1 INTRODUCTION (THEORY OF BEAMS ON ELASTIC FOUNDATION)

The basic analysis of bending of beams on an elastic foundation, see references [1] to [5] and
[7], is developed on the assumption that the strains are small.

In this context, an elastic foundation is defined as a support which is continuously or
discontinuously distributed along the length of the beam. The reaction force g :qR(x) INm™/
distributed in a foundation is directly proportional to the deflection v =v(x) /m/ of a straight beam,
see Fig. 1, or proportional to the radial displacement u, =u, (@) /m/ of a curved beam, see Fig. 2.
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This article is focused on the solution of the straight and curved beams on elastic foundation,
see Fig. 1 and 2, which leads to the solution of linear or nonlinear differential equations via Finite

Difference Method (i.e. Central Difference Method).

This article also mentioned a new research in nonlinear behaviour of elastic foundation.
X dxrds Beam

Before loading:
gﬁ

Foundation

M,+ dM,

N,

2" l N+ dN

1(x)+dv(x)

After loading:

qy T+dT

Fig. 2 Example of a curved beam on elastic foundation and its element

2 DIFFERENTIAL EQUATION FOR STRAIGHT BEAMS RESTED ON

ELASTIC FOUNDATION
The bending of straight beams on elastic foundations, see Fig. 1, can be described by ordinary

linear differential equation

134



dizlv_ N dizv_,_ﬁ dzqR+ 9. _ 1 (_mj+ﬁ d’q e, d’(t,-t,) 1)
dx* EJ,; dx* GA dx* EJ,; El,

dx ) GAdx? h  dx?

where E /Pa/ is modulus of elasticity of the beam, J; /m*/ is the major principal second moment of
area A /m?/ of the beam cross-section, £ /1/ is shear deflection constant of the beam, G /Pa/ is shear
modulus of the beam, N /N/ is normal force, ¢ = q(x) /INm™/ is distributed load (intensity of force),
m /N/ is distributed couple (intensity of moment), o, /deg™/ is coefficient of thermal expansion of
the beam, h /m/ is depth of the beam and t, —t, /deg/ is transversal temperature increasing in the
beam. Equation (1) is derived for the situations when input parameters E, J,., N, 8, G, A, ¢, and h
are constant. For more information about the derivation of eq. (1), see references [1] to [7].
From the Winkler's (linear) theory, see references [1] to [5] and [7], is evident that

Qg = kv=DbKv @

where functions: k =k(x) /Pa/ is stiffness of the foundation and K = K(x) /Nm=/ is modulus of

the foundation which can be expressed as functions of variable x /m/ (i.e. longitudinal changes in the
foundation) and b /m/ is width of the beam, see Fig. 1 and 3.

A A A A A A A A A

T =1 -1 1T -
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? \/\ Y\l/
Xi-3 b
Xi2 Potatelni stav (nedeformovany)
Xi1 Initial state (undeformed)
Xi
Xin
Xi
Xi3
Y

Fig. 3 Solved straight beam is divided into nodes "i"

Hence, from eq. (1) and (2) follows

4 2 2 2 2(y
dv_ N dv pdikv), kv _ 1 (q_((jer]j+/i’czlc1_oztd (t-t) (3
X
zT

dx‘ EJ, dx’ GA dx* EJ, EJ

In the most situations, the influences of shearing force, temperature and intensity of moment
can be neglected (or the beam is not exposed to them). Hence, from eq. (3) follows simple form

GAdx*> h dx?

4 2
dv_ N dv, kv _ g @)
dx* EJ, dx* EJ, EJ,

3 DIFFERENTIAL EQUATION FOR CURVED BEAMS ON ELASTIC
FOUNDATION

The bending of curved beams on elastic foundations, see chapter 1 and Fig. 2, can be
described by ordinary linear differential equation

5 3 4
d U +2d U +Q%u, __R dq ®)
de® de® EJ,, do
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Where: R /m/ is radius of the beam, ¢ /rad/ is angle variable and parameter Q /1/ is given by equation

4
Q- 11 <R ®)
EJZT

From the Winkler's theory, see references [1] to [5], is evident that
qg =kuy =bKug. (7)

4 FINITE DIFFERENCES

Let us divide beam (for example straight beam) into nodes equally spaced (with step
A Im/') along its length, see Fig. 3 (unloaded beam) and Fig. 4 (loaded beam).
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Fig. 4 Solved straight beam is divided into nodes

Deflection curve v = v(x) of a straight beam is approximated by polygon curve, see Fig. 5.

Aproximace:
0 Approximations:
1]
" a;_ ... pétné diference
backward differences
A A a; ... centrilni diference
central differences
. a;, ... dopiedné diference
& i-1 forward differences
°;~
) Vig # * Konecny stav (deformovany)
Y ' & Final state (deformed)

Fig. 5 Approximation of the deflections by polygon curve and approximation of first derivative

Finite differences can be defined as an approximation of derivatives. Hence, for the value of
first derivative, three types of differences can be defined according to Fig. 5:

e Backward difference at the point "i

v~ ME=X) o y iV ®)
dx 4
e Forward difference at the point "i"
dv(x = x;) Vo, —V,
(1) i _Vin i
——— "V stan(ey, ) =2 9)
Vi o (@) ==
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e  Central difference at the point "i"

- @ 4O _
Vi(l) _ M ~ tan(ai) - Vie FVic - Via —Via . (10)
d 2 24
In some references (for example [7] and [11]) are symbols "i-", "i+" noted as "i-%4" and "i+%".

Central differences (CD) are more accurate, therefore they will be applied in the following
text. Similarly, the higher derivatives (at the point "i"") can be approximated by the central derivatives
as

d?V(X=X) Vi =2V, 4V

(2
V& = =~ ) (11)
' dx’ A
vO — d3V(X = Xi) ~ Via =2V + 2V, —Vi, , (12)
' dx? 24°
v — d*v(x=x) < iz T Aviy +6v -4V, +Vi, ’ (13)
' dx* 4
v — d®v(x=x) < Viss — WViip +OViy =V +AV, —Vig . (14)
' dx® 24°
6 _ d GV(X = Xi) Vi — 6vi., +15v;,, —20v; +15v;, -6V, TVis (15)

' dx® A°
Similarly, for a curved beams (i.e. approximations for derivatives of function u, =u,(¢)).

can be derived CD formulas by substitution of variables (for example

®,, ®
ug =dLIR(;0:(pi)ztan(ai) _ Uri ZUR" - URMZ_AURH etc.).
4

5 CENTRAL DIFFERENCE METHOD (CDM) FOR STRAIGHT BEAMS
(EXAMPLE 1)

According the Central Difference Method (CDM), the differential equations (4) for straight
beams can be approximated at the general point "i" (see eq. (11) and (13)) as

2 2 4 2 4
Vi, —[4+NAJVi+1 +(6+ 2NA” ki Jvi —(4+ N JVH +V,, = 44 (9)
Jor Bl B J oy EJ

where k; and q, are stiffness of the foundation and distributed load at the point "i".

Equation (16) can be written for all nodes i=0,1, 2,...,n (i.e. set of n+1 linear equations

following from the discretization of eq. (4)). This set of equations, together with four discretized
boundary conditons, lead to the solution of system of n+5 linear equations. Hence, values of v, at
each node "i" (i.e. values of n+5 deflections) can be received, see also reference [3] and [9].

Note: if step 4 — 0 (i.e. n — o) then numerical solution converge to exact solution.

Some solved examples are presented in reference [3], see Fig. 5 to 8, and reference [8] (The
beam of length L /m/ is rested on elastic foundation with constant stiffness of foundation k. The beam
is loaded by a couple M /Nm/. This beam is not loaded by distributed load, i.e. q =0 Nm™).
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Fig. 5 Example solved in reference [3] (straight beam on elastic foundation loaded by couple M)

According to the theory, two boundary conditions can be written at the point x =0 m

d?v(x=0) d?v(x =0)

o(x=0) T (dxz ) 3 (dxz | , 17
d°v(x=0 d°vix=0

(=0)=E1, S0 i

and two boundary conditions at the point x = L
2 _ 2 _
Mo(XzL):_E‘JZTM:_M - d V(X—L): M
dx’ dx’ Bl |, (18)
d3v(x=L) dv(x=L)
T(x=L)=-EJ,, ™ 0 e -0

where M, /Nm/ is bending moment and T /N/ is shearing force.

Let the length L of the beam is divided into n parts with equal steps A= % see Fig. 5,

where node "0" is at the distance x = 0 m and node "n" is at the distance x = L.
Because q =0 Nm™, the eq. (16) can be written in the form

ka* .
Vi, — 4V, +(6+ = Jvi —4v,_ +v, , =0, fori=0,1,2,3,...,n- (19)

i+1
z7T

According to eq. (11) and (12) and Fig. 5, the boundary conditions (17) to (18) can be
approximated via central differences as:

d’v(x=0) Vv, -2v,+V,

=0 = v, ,-2vy+v, =0

dx? A? , (20)
Svix = —V_, +2V, =2V, +V
dx 24
2y(x=L) Vv, —2v, +V M M4?
d V(X2 L) ~ Un=t 2n n+l _ = Vv, _2Vn +V, ., =
dx 4 Bl B . (21)
Sv(x = -V +2V, =2V ., +V
d V(X3 L)z n-2 n-1 - n+l n+2 =0 = -V, +2Vn—1_2Vn+l +V, ., =0
dx 24

Expressions (19), (20) and (21) lead to a set of n+5 linear equations with sparse matrix, see
Fig. 6 (i.e. solution for n=5 elements) and Fig. 7 (i.e. solution for n =50 elements). Hence, the
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values of deflection v, at each node can be calculated (i.. v_,, v, Vg» Vys Vyo Vgo ooy V50 V50 Vo

vn+1 ! Vn+2 )

« nenulové prvky
n=5 |+nonzeroelements

Tre + = o s
2+ . o+ s e s
i e n+1 Fadku (diferenciilni rovnice)
at . e s s n+1 rows (differential equation)
BSH e e e
| Ce e
T+ . .
Bre » ot 4 ¥adky (okrajové podminky)
ol . 4 rows (boundary conditions)
1ot P P

1 2 3 4 5 6 7 8 9 10
Column

pocet nenulovych prvki = 44
number of nonzero elements = 44

pocet nulovych prvki = 56
number of zero elements = 56

Fig. 6 Example solved in reference [3] and Fig. 5 (sparsity patterns of matrices in CDM, number of
elements n = 5)

«nenulové prvky
n=50 |+nonzero elements

T *iiit. 1
",
i,
10 ‘%38.
",
",
20} i,
z ‘:i%é: n+ 1 iadkia (diferenciilni rovnice)
S "igk n+1 rows (differential equation)
& N
o i,
iy,
",
40 "iﬁ:.
i,
i, )
:2 L 2ot L } 4 radky (okrajové podminky)
) ) ) ‘ ) % 7 4 rows (boundary conditions)
1 10 20 30 40 50 55

Column

pocet nenulovych prvkii =269
number of nonzero elements = 269

pocet nulovych prvkii = 2756
number of zero elements = 2756

Fig. 7 Example solved in reference [3] and Fig. 5 (sparsity patterns of matrices in CDM, number of
elements n = 50)
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Deflections at fictitious nodes -2, -1, n+1, and n+2 (i.e. v_,, v, v, , and v_,) are defined out

of the range of the beam (see Fig. 5), therefore they do not have physical meaning. However, these
nodes are important for the solution.

n+2

Numerical solutions were performed by Matlab software (function BEAM_MOMENT), see
Fig. 8 and Tab. 1.
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Metoda centrilnich diferenci (n =5, 4=1m)
"~ Central Difference Method (n=5,A=1m)

_. Metoda centralnich diferenci (n =50, 4 = 0.1 m)
Central Difference Method (n =50, 4 = 0.1 m)

Def }ection of the Beam v /m/
o
o

\

Piesné FeSeni
Exact solution

1 2 3 4 5
x /m/

|
-
o
o

L=5m

Fig. 8 Example solved in reference [3] and Fig. 5 (deflection of the beam, numerical and analytical
approaches)

Analytical solution (i.e. exact solution) is compared with solutions acquired via CDM in
Fig. 8 (example: calculated for inputs L=5m, E=2x10"Pa, J, =2x10"m’, k=2x10"Pa,
M = 10° Nm, Matlab software).
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Tab. 1 Example solved in reference [3] and Fig. 5 (programming, Matlab software)

function BEAM MOMENT (n,L,E,Jzt, k,M)
%$ n ... Number of divisions (i.e. number of elements) of the beam

AN
~
N

L ..Length of the beam /m/

E . .Modulus of elasticity /Pa/

Jzt ..Major principal second moment of area /m‘/

.Stiffness of the foundation /Pa/

M . .External moment /Nm/

EXACT SOLUTION v /m/ (see ref. [1] and [3]):

omg=(0.25*k/ (E*Jzt))"0.25;

B= (M*omg”"2*exp (momg*L) )/ (k* (cosh (2*omg*L) +cos (2*omg*L) -2) ) ;

Al=B* (exp (2*omg*L) * (cos (omg*L) —sin (omg*L) ) +3*sin (omg*L) -cos (omg*L) ) ;
A2=B* (exp (2*omg*L) * (cos (omg*L) +sin (omg*L) ) +sin (omg*L) -cos (omg*L) ) ;
A3=B* (-exp (2*omg*L) * (cos (omg*L) +3*sin (omg*L) ) +sin (omg*L) +cos (omg*L) ) ;
x=0:0.01:L;

v=(Al*exp (omg*x) +A3*exp (-

omg*x)) .*cos (omg*x)+2*A2*cosh (omg*x) .*sin (omg*x) ;

% CENTRAL DIFFERENCE METHOD (CDM)) :

h=L/n; % Length of step (distance between nodes) /m/
xn=(-2*h) :h: (L+2*h); % coordinates (for numerical solution)

for i=1l:n+5

for j=1l:n+5

do oo oo oo oo oo
w

V(i,j)=o,’
end
end
for i=l:n+1
Vi(i,i)=1; V(i,i+l)=-4; V(i,i+2)=6+(k*h"4)/(E*Jzt);
V(i,i+3)=-4; V(i,i+4)=1; RightSide (i)=0;
end
% CDM (boundary conditions):
V(nt+2,2)=1; V(n+2,3)=-2; V(nt2,4)=1;
V(n+3,1)=-1; V(n+3,2)=2; V(n+3,4)=-2; V(n+3,5)=1;
V(n+4,n+2)=1; V(n+4,n+3)=-2; V(n+4,n+4)=1;
V(n+5,n+1l)=-1; V(n+5,n+2)=2; V(n+5,n+4)=-2; V(n+5,n+5)=1;

RightSide (n+2)=0; RightSide (n+3)=0;
RightSide (n+4)=(M*h"2)/ (E*Jzt); RightSide (n+5)=0;
% CDM (displacement calculation vn /m/):
vn=inv (V) *RightSide"';

% CMD (deleting of fictitious nodes):
xn=xn(3:n+3); vn=v(3:n+3); vn=vn(3:n+3);

% FIGURE (exact and CDM displacement) :

clf, hold on,

plot(x,v,'r'), plot(xn,vn)

hold off
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6 CENTRAL DIFFERENCE METHOD (CDM) FOR CURVED BEAMS

According the CDM, the differential equations (5) for curved beams can be approximated at
the general point "i" (see modified eq. (12) and (14)) as
Ugpos + (242 —4)ug,., +(5-447 +Q24* )u

Ri+1 +

R 45 (22)

Bl

+(—5+4A2 —Qfd“)uRH +(—2A2 +4)uRF2 —Ug 5 = q®,

4 _
where k;, Q. = 1+ki7|:a and q® =M are stiffness of the foundation, parameter and

EJ de
first derivative of distributed load at the point "i".
Equation (22) can be written for all nodes i=0,1, 2,...,n (i.e. set of n+1 linear equations

following from the discretization of eq. (5)). This set of equations, together with four discretized
beam boundary conditons and two boundary conditions for normal forces , lead to the solution of
system of n+7 linear equations. Hence, values of u,, at each node "i" (i.e. values of n+7 deflections)

can be received, see also reference [3].
Note: if step 4 — 0 (i.e. n — o0) then numerical solution converge to exact solution.

7 BEAM ON ELASTIC FOUNDATION WITH VARIABLE STIFFNESS OF
FOUNDATION (EXAMPLE 2)

Beam of length L /m/ is rested on elastic foundation with a variable stiffness of foundation

K = k(x) = K ;k + e ;"M'N fsin(bx)+ 5]- (23)
where k.. and k,,, /Pa/ are maximum and minimum values of stiffness of foundation, b/m™/

and g3 frad/ are parameters of variability of the stiffness. The beam is exposed to force F /N/ and
constant distributed load q=q,, see Fig. 9 and some results in Fig. 10.

X

q=q, F

NANE
<
A
=

=~

k(x)

kMIN

|
|
| kMAX
l
|
|

k

x/m/

Fig. 9 Example 2 (beam on elastic foundation loaded by force F and distributed loading q)
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Metoda centralnich diferenci (n =6, 4 =10.5m)
~~ Central Difference Method (n = 6 =0.5m)
I _- Metoda centralnich diferenci (n =30, 4 = 0.1 m)

" Central Difference Method (n =30, A=0.1 m)

___ Metoda centralnich diferenci (n =300, A = 0.01 m)
Central Difference Method (n =300, A = 0.01 m)

a

Deflection of the Beam v /m/
w =N

2 1 1 1 1 1 1
0 05 1 15 2 25
x /m/
< L=3m =

Fig. 10 Example 2 (deflection of the beam, numerical approach)

For more information, see reference [8].

8 BEAM ON NONLINEAR ELASTIC FOUNDATION (EXAMPLE 3)

Beam of length L /m/ with rectangular cross-section bxh is resting on elastic foundation.
The beam is loaded by force F=10°N, see Fig. 11. Material and cross-sectional properties are

3 3
E=2x10"Pa, J,, = bhé _0.2x 0'4K2 =1.066667 x103 m* and linear/nonlinear properties
of foundation properties (i.e. k; and k,) are described in Fig. 12 and Tab. 2.

A
> L F L
: X
g4 — = _!_ ........ _.9
[
TRaaVAS
vV
Fig. 11 Example 3 - Beam of length 2L is resting on elastic linear/nonlinear foundation and loaded by
force F.

Hence, general form of governing equation is given by nonlinear differential equation

d*v  kyv+kyv®
+
dx* EJ,,

=0. (24)
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Fig. 12 Dependence of reaction force in foundation (experiment and its linear and nonlinear
approximations)

Tab. 2 Experiments and its linear and nonlinear approximations for reaction forces in foundation.

Description: Expression, see Fig. 12:
Experiments Ur, measurements — average values
qg. =k,v=2x10"v, linear differential
Linear ' .
approximation equation d’v i Kyv _ 0.
dx*  EJ,
Un. =kyv® =10"v?, nonlinear
Cubic :
. : : o div kgv®
approximation differential equation = 4 8~ _.
dx*  EJ,
O, , =k +kyv* =107V +5x107v°,
Linear + cubic nonlinear differential equation
approximation d*v +M 0
dx* EJ,,
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Finally, set of nonlinear equations was solved via Newton-Raphson Method, see some results
in Fig. 13 and 14.

0.005 ‘ :

E —&- Linear approx.
£ —©- Cubic approx.

g 0.004 ‘L — Linear + cubic approx.
-

£ 0,003 |

g :

g
= 0.002 -
Z
2 o

4 0.001 =
=

0
005 10 20 30 40
L 'm/

Fig. 13 Dependence of maximal values of displacement on length L of the beam

70000 —---pg-----7-mmmmmmmmmmpm=mnmnn

10000 i i i |
0 10 20 30 40
L /m/
Fig. 14 Dependence of maximal bending moments on length L of the beam
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en 30000 | -8~ Linear approx.
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For more information see reference [12].

CONCLUSIONS

This article shows derivations and way of application of the Central Difference Method
(CDM) as a numerical method suitable for the solution of the straight or curved beams on elastic
foundation. For more information about applications of CDM, see [3], [7], [8], [9], [11] and [12].
CDM seems to be a good alternative to widely spread Finite Element Method.

Three examples of beams on elastic linear and nonlinear elastic foundation was solved and
presented.

Another ways of the solutions and applications of structures on elastic foundation are
presented in [1] to [10] and [12].
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