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MODELLING OF CORTICAL BONE TISSUE AS A FLUID SATURATED DOUBLE-POROUS
MATERIAL - PARAMETRIC STUDY

MODELOVÁNÍ TKÁNĚ KORTIKÁLNÍ KOSTI JAKO TEKUTINOU PROSYCENÝ MATERIÁL S
DVOJÍ POROZITOU - PARAMETRICKÁ STUDIE

Abstract In this paper, the cortical bone tissue is considered as a poroelastic material with
periodic structure represented at microscopic and mesoscopic levels. The pores of microscopic scale
are connected with the pores of mesoscopic scale creating one system of connected network filled
with compressible fluid. The method of asymptotic homogenization is applied to upscale the micro-
scopic model of the fluid-solid interaction under a static loading. Obtained homogenized coefficients
describe material properties of the poroelastic matrix fractured by fluid-filled pores whose geometry is
described at the mesoscopic level. The second-level upscaling provides homogenized poroelastic coef-
ficients relevant on the macroscopic scale. Furthermore, we study the dependence of these coefficients
on geometrical parameters on related microscopic and macroscopic scales.

Abstrakt Tento článek představuje model tkáně kortikálnı́ kosti jako materiálu s periodickou
strukturou reprezentovanou na microskopické a mezoscopické úrovni. Póry na těchto dvou úrovnı́ch
jsou vzájemně propojené a vytvářejı́ tak souvislý objem vyplněný stlačitelnou tekutinou. Aplikacı́
metody asymptotické homogenizace na mikroskopický problém interakce mezi tekutinou a elastickým
skeletem jsou zı́skány homogenizované koeficienty popisujı́cı́ materiálové vlastnosti poroelastické ma-
trice nasycené tekutinou. Na mezoskopické úrovni je tato matrice perforována systémem kanálů této
vyššı́ úrovně. Dalšı́ aplikacı́ metody homogenizace na této úrovni jsou zı́skány efektivnı́ poroelastické
koeficienty popisujı́cı́ chovánı́ materiálu na makroskopické úrovni. Dále je provedena studie závislosti
těchto koeficientů na geometrických parametrech vztahujı́cı́ch se k mikroskopické a makroskopické
úrovni.

Keywords Poroelasticity, homogenization, porous medium, osteon, cortical bone, tissue mod-
elling, unfolding method.

1 INTRODUCTION
The cortical bone can be represented as hierarchical material with several scales of structure.

At the level, bone tissue is formed as a porous structure incorporating collagen molecules and mineral
crystals. However, this study is oriented on the microstructural level of the bone, specifically to a single
bone osteon. At the macroscopic level the bone is formed by osteons.

The osteon is a hollow structure of approximately cylindrical shape; in the cortical bone of
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France, e-mail: salah.naili@univ-paris-est.fr

∗∗∗∗ Ing. Ph.D., New Technologies Reasearch Centre, University of West Bohemia in Pilsen, Univerzitnı́ 8, Plzeň, e-mail: cimr-
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humans and some other species, its radius ranges 100 ÷ 150µm. The hollow space in the center of the
osteon (the diameter about 10÷15µm is called the Haversian canal, which usually contains blood vessels,
nerves and bone fluid which penetrate into secondary porosities distributed in the wall of osteons. These
are formed by small tunnels (≈ 0.5÷2µm) called canaliculi, connecting the Haversian canal with lacunae.
This level can be called canalicular porosity level.

The lacunae are shaped in the forms of ellipsoids, each containing one osteocyte. The principal
axes of lacunae are approximately 25 × 10 × 5µm, [4]. The network consisting of lacunae mutually
connected by canaliculi is called lacunar-canalicular porosity level.

Because of the large number of lacunae and canaliculi in each osteon, a direct modelling of such
a complex structure would lead to prohibitively complex problems even if merely a static loading was
considered. Therefore, a model based on two-level homogenization with a periodic structure ansatz
applied at each level was proposed, to obtain material properties of the bone osteon matrix.

We consider the following two levels of homogenization.

• α−level - upscaling from the canalicular porosity level to obtain the material model describing
effective behaviour relevant at the β-level of heterogeneity. The bone matrix is constituted by a
solid perforated by canaliculi.

• β−level - upscaling from the lacunar-canalicular porosity level to obtain the material model de-
scribing effective behaviour at the level of osteones. The heterogeneous structure is formed by
the poroelastic matrix with connected porosity (the canaliculi) drained in the ellipsoidal fractures
representing lacunae.

2 MATHEMATICAL MODEL
In this section we record results of the two-level homogenized model proposed in [3].

2.1 Homogenization of the α-level
Domain Ωα ⊂ R is decomposed into the (solid) matrix Ωα,ε

m and canals Ωα,ε
c as follows:

Ωα = Ωα,ε
m ∪Ωα,ε

c ∪ Γα,ε, Ωα,ε
c = Ωα,ε \ Ω̄α,ε

m , Γα,ε = Ω̄α,ε
m ∩ Ω̄α,ε

c . (1)

Above and throughout the text, by ε we refer to the scale parameter, the ration between two character-
istic lengths associated with the micro- and meso-scales.

If the static loading is assumed, the deformation of the fluid-solid interaction is governed by the
following problem: Find a displacement field uα,ε and a fluid pressure p̄α,ε such that

−∇(Dα,ε∇S uα,ε) = fα,ε, in Ωα,ε
m (2)

nm.Dα,ε∇S uα,ε = gα,ε, on ∂extΩ
α,ε
m (3)

nm.Dα,ε∇S uα,ε = −p̄α,ε, on Γα,ε . (4)

and (by ˜we denote a matrix-to-canal extension)∫
∂Ωα,ε

c

ũα,ε.ncdS x + γα p̄α,ε|Ωα,ε
c | = −Jα,ε, (5)

where Dα,ε is the elasticity fourth-order tensor of the matrix, γα is the fluid compressibility and gα,ε and
fα,ε are applied surface-force and volume-force fields. Below we describe the homogenized model of
poroelasticity consisting of local problems for so-called corrector basis functions which are involved in
expressions of the homogenized coefficients.
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2.2 Homogenized problem on α−level
The periodic microstructure is generated by the reference periodic cell (RPC) Yα decomposed

into the matrix part Yα
m and canals Yα

c , as follows:

Yα = Yα
m ∪ Yα

c ∪ Γα
Y , Yα

c = Yα \ Ȳα
m, Γα

Y = Ȳα
m ∩ Ȳα

c (6)

Two types of local problems imposed in Ym must be solved for characteristic displacements ωi j and
ωp being Y-periodic functions from the Sobolev space H1(Yα) consisting of functions with the first
derivatives in L2(Yα); this space is denoted by H1

#(Yα):

Find ωi j ∈ H1
#(Yα) and ωp ∈ H1

#(Yα) satisfying

am
y (ωi j +Πi j, v) = 0, i, j = 1, , 3 , (7)

am
y (ωp, v) =

1
|Yα|

∫
Γm

v.nmdS y, (8)

where Πi j = (Πi j
k ), i, j, k = 1, 2, 3 with Π

i j
k = y jδik and am

y is the bilinear form defined as follows:

am
y (w, v) =

1
|Yα|

∫
Ym

(D∇S
y w) : ∇S

y v . (9)

2.3 Model obtained by homogenization
The effective properties of the deformable porous medium are introduced using the characteristic

responses obtained as the solutions of (12)

Ai jkl = am
y (ωi j +Πi j,ωkl +Πkl), Bi j = −

1
|Yα|

∫
Ym

divyω
i j, M = am

y (ωp,ωp), (10)

where both the tensors are symmetric, i.e. A = (Ai jkl) satisfies Ai jkl = Akli j = A jikl and B = (Bi j) satisfies
Bi j = B ji. Obviously, M > 0.

At the first level of the homogenization process, we obtain the model of poroelasticity governing
the skeleton displacement u ∈ V(Ω) and the fluid pressure p̄ ∈ R which verify the following equations:∫

Ω

(A∇S
x u − p̄B̂) : ∇S

x v =

∫
Ω

(1 − φ)f.v +

∫
∂Ω

ḡ.vdS x ∀v ∈ V(Ω) (11)

∫
Ω

B̂∇S
x u + p̄(M + φ̄γ)|Ω| = −J, B̂ := B + φI (12)

where V(Ω) is the space of kinematically admissible displacements (we omit details on various types
of the boundary conditions and solvability conditions, see [3] for details), J is the limit of total fluid
injection, ḡ is the mean surface traction and φ̄ is the mean porosity. All A,B,M, φ and J are associated
with the upscalling from the α−level to the β−level and will be further labeled by the superscript α.

2.4 Homogenization of the β−level
In an analogy to the previous level, β−level is split into a matrix and canal. Note that in our case,

the ”canal” is represented by ellipsoidal lacuna. The name ”canal” remains just for preserving subscript
c. In Rohan et.all (2012), [3] the description of this level is as follows: displacement uβ,ε and pressure
p̄ε must satisfy

∫
Ω
β,ε
m

(Aα∇S uβ,ε − p̄εB̂α) : ∇S v + p̄ε
∫
Γβ,ε

v.nmdS x =

∫
∂extΩ

β,ε
m

ḡα.vdS x +

∫
Ω
β,ε
m

f̂α.v, ∀v ∈ V(Ωβ,ε
m ) , (13)
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and ∫
Ω
β,ε
m

(B̂α : ∇S uβ,ε +

∫
∂Ω

β,ε
c

ũβ,ε.ncdS x + p̄ε
[
(Mα) + γφ̄α|Ωβ,ε

m | + γ|Ωβ,ε
c |
]

= −Jβ,ε (14)

2.5 Homogenized problem on β−level
The heterogeneities at the mesoscopic beta-level are represented by the RPC with an analogous

decomposition as introduced in (6). Local problems on the β−level are introduced, as follows: Find
ωi j ∈ H1

#(Yα) and ωp ∈ H1
#(Yα) satisfying∫
Yβ

m

[
Aα∇S

y (ωi j +Πi j)
]

: ∇S
y v = 0 (15)

∫
Yβ

m

[
Aα∇S

yω
p
]

: ∇S
y v = −

∫
Yβ

m

B̂α : ∇S
y v +

∫
Γ
β
Y

v.nmdS y (16)

The effective poroelasticity properties are given by the following coefficients:

Aβ

i jkl =

∫
Yβ

m

[
Aα∇S

y (ωkl +Πkl)
]

: ∇S
y v(ωi j +Πi j) (17)

Bβ

i j =

∫
Yβ

m

B̂α : ∇S
y v(ωi j +Πi j) −

1
|Yβ

m|

∫
Ymβ

divyω
i j (18)

Mβ =

∫
Yβ

m

[
Aα∇S

y (ωp)
]

: ∇S
y v(ωp) (19)

The response of the homogenized medium at macroscopic scale is described by the displacement
u and by pressure p̄ satisfying

∫
Ωβ

(Aβ∇S
x u − p̄B̂β) : ∇S

x v =

∫
Ωβ

(1 − φβ)fα.v +

∫
∂Ωβ

ḡβ.vdS x ∀V(Ω) (20)∫
Ωβ

B̂β∇S
x u + p̄M̂β|Ωβ| = −Jβ, (21)

where
B̂β := Bβ + φβI, M̂β := Mβ + γφ̄β + (Mα + γφ̄α)(1 − φ̄β) . (22)

3 Geometry
In this section, the geometry, which was used as the representation of the α−level and β−level

structure, is presented. For both geometry creation and meshing was used the software GMSH. In the
case of our model, when the periodic structure is considered, the generated mesh must be also periodic.

3.1 Geometry on α−level
A cubic cell Yα with a characteristic length L was used. Note, that numbers of canaliculi differ

in X, Y, Z direction. To determine the number of canaliculi in each direction, we followed the approach
from [1]. Using the number of canaliculi per lacuna N.Ca, projected surface areas for the osteocyte
lacunar ellipsoid in the X-Z, X-Y and Y-Z planes PS Axz, PS Axy, PS Ayz and their sum TPS A, we can deter-
mine number of canaliculi in X, Y and Z direction nx, ny, nz,. On the alpha level we have to calculate the
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number of canaliculi in each direction from Eq.(23).

ni =
PS A jk

2TPS A
N.Ca, i, j, k = x, y, z. (23)

From the Eq.(23) it is clear, that the size of lacunae determined by semi-axes a0, b0, c0 allows for
determination of the number of canaliculi in each direction. The numerous canaliculis are approximated
by one bigger canal in each direction with a corresponding diameter. This simplification is reasonable
- the modelling of numerous small canals would consume a lot of computational time and we expect
only small impact on result. The resulting mesh can be seen on Fig.1.

3.2 Geometry on β−level
The β−level geometry represents lacunae in a matrix characterized by elastic properties obtained

by homogenization on the previous level. We created a cubic periodic cell with characteristic length L.
The lacunae is represented by an ellipsoid defined by semi-axes a0, b0, c0, which determine the size of
lacunae. The resulting mesh can be seen on Fig.1.

Symbol Parameter Unit α−level β−level
E Young’s modulus GPa 18.0 -
ν Poisson’s ration - 0.3 -
γ fluid compressibility GPa−1 0.9 -
L characteristic length of RPC µm 4.3 43
rx diameter of canaliculi in x-direction µm 0.6-1.8 -
ry diameter of canaliculi in y-direction µm 0.6 -
rz diameter of canaliculi in z-direction µm 0.6 -
a0 semi-axis of ellipsoid in x-direction µm - 2.5
b0 semi-axis of ellipsoid in y-direction µm - 12.5
c0 semi-axis of ellipsoid in z-direction µm - 5.0

N.Ca number of canaliculi per lacunae - 106 -

Tab. 1 Input parameters of model for α−level and β−level

Fig. 1 Left – geometry on α-level; Right – geometry on β−level

4 Parameter study
The mathematical model from the section above was implemented in Sfepy, software for solving

systems of coupled partial differential equations by the finite element method, see http://sfepy.org.
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All of the used input arguments, namely the material properties on microscopic level and the geometric
properties of the mesh are shown in Tab.1.

A parameter study was performed; the porosity on α−level was changed by increasing the x-
direction canaliculi diameter rx. The y-direction and z-direction was kept constant. The structure on
α−level was oriented in x-axis direction. Logically, this caused a change of the poroelastic properties
on the macroscopic level. The dependency of Young’s modulus and Poisson’s ratio on φγ porosity, where
φγ = φα + φβ − φαφβ, is shown in the Fig.2. It can bee seen that using the isotropic material considered
at the microscopic level we an orthotropic material has been obtained on the macroscopic level, whose
anisotropy increases with the change of porosity.

5 CONCLUSIONS
The presented homogenized model can be used for modelling cortical bone tissue. Various ge-

ometries representing fluid saturated porous structure related to microscopic and mesoscopic level were
considered. The influence of changing one of the α−level geometric parameters on the homogenized
coefficients, related to macroscopic level, was studied. This modelling approach is proposed as an ad-
vanced hierarchical description of poroelastic properties of the cortical bone tissue, but a wide range of
further applications is expected.

Fig. 2 The dependency of poroelastic properties on porosity change caused by increase of rx: Left –
Young’s modulus; Right – Poisson’s ratio
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