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Abstract

The common sizes and weights of rotors, which can be found e.g. in the energy production in-
dustry, allow to employ a standard methodology of an experimental modal analysis. However, certain
applications with rotors of small weights lead to the usage of alternative measuring methods suitable for
the identification of rotor eigenfrequencies. One of these methods, which is characterized by the mea-
suring of noise, is introduced in this paper and the results for a particular rotor is presented. Moreover
the tuning of the finite element rotor model on the basis of such measured values is shown.

Abstrakt

Standardnı́ velikosti a hmotnosti rotorů, které se běžně vyskytujı́ napřı́klad v energetických ap-
likacı́ch, umožňujı́ využitı́ standardnı́ch metod experimentálnı́ modálnı́ analýzy. Určité aplikace charak-
terizované nı́zkou hmotnostı́ rotorů však vedou na využitı́ alternativnı́ch metod měřenı́ vhodných pro
identifikaci vlastnı́ch frekvencı́ rotoru. Jedna z těchto metod, která je založen na měřenı́ hluku, je
představena v tomto článku a jsou ukázány vybrané výsledky na konkrétnı́m rotoru. Dále je popsán
matematický model rotoru založený na metodě konečných prvků a ukázáno laděnı́ parametrů tohoto
modelu s využitı́m naměřených vlastnı́ch frekvencı́.

1 INTRODUCTION
Rotor dynamics is an interesting and useful engineering area with many types of industrial

applications. An experimental verification of rotor models is a necessary part of rotor analyses and
various calculations. The knowledge of real-life rotors eigenfrequencies and modal shapes is a key to
the successful verifications. Small and lightweight metal rotors have high eigenfrequencies – in the band
up to 3200 Hz can usually be found but the first two eigenfrequencies. The conventional experimental
modal analysis [1] can be difficult to perform in the frequency band above 3200 Hz because such a test
can be affected by one or more of the following issues:

• the frequency spectrum of an excitation force is not constant enough in the frequency band in
which the modal analysis is carrying out (the decrease between low and high end of the band is
greater than 20 dB),

• the frequency range of used transducers is insufficient due to the low resonant frequency of the
transducer (an uncertainty of amplitude and phase measurement caused by mechanical properties
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of the transducer can be ignored in the band up to ca. 0.3 · fr, where fr is the resonant frequency
of the transducer),

• connections between the rotor and the ground, e.g. a structure suspending, transducer cables or
a modal shaker arm, cannot be neglected because they have an influence on modal properties of
the rotor (too stiff couplings can decrease the values of the eigenfrequencies by more than 10 %
and unsuitably chosen positions of such couplings affect a form of some modal shapes).

The abovementioned problems can be eliminated by employing a testing method, which is not
dependant on the quality of the excitation force, and by use of transducers, which are not mounted on
the structure’s surface, e.g. a microphone or a laser proximity sensor.

2 MEASUREMENT OF ACOUSTIC RESPONSE
An analysis employing the measurement using microphones cannot be considered to be a stan-

dard modal analysis because it does not provide any information regarding modal properties of the
tested structure except values of certain eigenfrequencies. For this reason only structures of known
mode shapes order, such as lightweight, thin rotors, can be tested. For these rotors the knowledge of the
mode shapes order can be achieved by performing a computational modal analysis with the use of the
finite element method.

The identification of eigenfrequencies from the acoustic response diminishes or completely
eliminates the influence above mentioned issues. The analysis is not limited by the frequency range
of a transducer, the lowest values of microphone’s low pass are usually around 15 kHz. The number of
connections between the tested structure and the ground always decreases – transducer cables are no
longer needed and the number of suspensions can be often reduced. The setup for a measurement of
a lightweight rotor acoustic response is shown in Fig. 1.

Fig. 1 The measurement of acoustic response in an unechoic chamber. Note that only one link with
a stand is needed

Furthermore, the analysis does not depend on the quality of an excitation force if a response is
measured instead of a frequency response function (FRF) generally given by

H( f ) =
X( f )
F( f )

(1)

where X( f ) and F( f ) are Fourier spectra of a response x(t) and an excitation f (t), f is a frequency.
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Although knowledge of real and imaginary parts of FRFs allows a fast and accurate identification
of eigenfrequencies using standard procedures and commercial applications, the acoustic response can
be also used. The response has to be converted from the time domain to the frequency domain and
peaks (tones) have to be found in the resulting spectrum.

Such a task can be performed either manually or programmatically. The eigenfrequencies related
to the bending modes are doubled for symmetric rotors, because such rotors have the same bending
stiffness in both horizontal and vertical planes in theory. However, values of bending stiffness of real-
life rotors differ slightly for each plane due to manufacturing inaccuracy, material nonhomogeneity etc.
The difference causes the separation of the doubled eigenfrequencies into two entities. The separation
can be easily observed in the frequency domain of the response – there are two or more close peaks
instead of one peak, which would be present if the bending stiffness in both aforementioned planes was
equal. This problem is illustrated in Fig. 2.

Fig. 2 Frequency spectrum of a real-life rotor acoustic response with the divided peak in the detail

The manual analysis of the real-life rotor acoustic response can be difficult because of ambigu-
ous positions of individual peaks and thus the programmatic approach can yield more accurate results.

Peaks can be detected by looking for downward zero-crossings in the smoothed first derivative
and peak amplitudes that exceed predefined threshold values, and the position, height, and approximate
width of each peak can be determined by least-squares curve-fitting the top part of the peak. The exact
code and the mathematical background is beyond this article reach and further details can be found
in [2], where MATLAB script, which is able to locate and measure the positive peaks in a noisy data
sets, is introduced.

In order to achieve as accurate results as possible, the rotor – or another tested structure – should
be sequentially excited in several reference points and the acoustic response should be recorded and
converted to the frequency domain. Each of the reference points should be excited at least twice.

The estimates of the first few rotor eigenfrequencies are the arithmetic means of found peaks
with similar frequencies. The uncertainty σ j of jth estimate can be determined as standard deviation
with applied Bessel’s correction given by
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σ j =

√√
1

n − 1

n∑
i=1

(
f j
i − f̄ j

i

)2
, (2)

where n is the number of analyzed acoustic responses, f j
i is the frequency of jth peak in ith frequency

spectrum, f̄ j is the arithmetic mean of jth peak frequency.

The standard deviation is one of the basic parameters of probability distributions. It shows how
much variation exists from the mean value.

The central limit theorem [3] states that the distribution of a mean value of many indepen-
dent, identically distributed random variables tends towards the normal distribution. Assuming f̄ j is
the expected value of the normal distribution and σ j equals its standard deviation, a probability density
function can be reconstructed and the upper deviation σ̄ j of the measurement can be calculated. σ̄ j is
usually chosen so as the interval

〈
f̄ j − σ̄ j, f̄ j + σ̄ j

〉
covers 90 % or 95 % possible values.

The first few rotor eigenfrequencies can be determined with the error lower than 1 %.

3 MATHEMATICAL MODEL OF A ROTOR
The measured eigenfrequencies are significant mainly for sake of the parameter identification of

mathematical models or their verification and therefore the chosen modelling approach will be briefly
described in this section. It will be introduced with important effects of rotation with respect to a further
model usage.

The rotating shaft can be considered as a one-dimensional continuum with undeformable cross-
section and can be discretized by shaft finite elements (Fig. 3). The circular cross-section according to
Fig. 3 is considered in this paper, the derivation of the more general mathematical model for a nonsym-
metrical cross-section was presented e.g. in [5].

Fig. 3 Simple scheme of a shaft finite element, red curve represents deformed centerline

Deformations of the shaft finite element in dependance on the longitudinal coordinate x are
described by the longitudinal displacement u(x), transverse displacements v(x) and w(x) in two per-
pendicular directions, angular displacements of the cross-section ϑ(x) and ψ(x) and torsional angular
displacement ϕ(x). The cross-section is supposed to remain perpendicular to the deformed shaft axis
and the shaft is rotating with the constant angular velocity ω.

A common approach for the rotating shaft model derivation is the expression of the kinetic
energy and the strain energy of the shaft finite element and their usage in the Lagrange formalism to
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the formulation of mass M, gyroscopic G and stiffness K matrices. These finite element matrices are
then used for the creation of the equations of motion of a discretized rotating shaft externally loaded by
vector f (t) in the form

M q̈(t) + ωG q̇(t) + K q(t) = f (t), (3)

where q(t) is a vector of shaft generalized coordinates. The model can be extended by effects of damping
[5], by models of rigid disks or similar bodies and by a model of various bearings [4].

4 TUNING OF MODEL PARAMETERS
Equation (3) can be simplified for ωs = 0 and for zero excitation with respect to the conditions

of the measurement. The modal analysis can be then performed and rotor eigenfrequencies and corre-
sponding eigenvectors can be calculated. The goal of the tuning of model parameters is the identification
of such parameters in vector p to obtain a sufficient agreement of measured and model eigenfrequencies.
The real rotor mathematical model (Fig. 1, discretized into 12 finite elements) is implemented in the
MATLAB system. The suitable model parameters are diameters of particular shaft finite elements and
inertia properties of coupled rigid disks (together 17 parameters). The parameter tuning is performed
as an optimization process. Initial model parameter values are defined by estimated values and relative
optimization parameters are used for a better numerical performance, so the initial parameter values are
equal to 1.

The objective function is chosen in the form

ψ(p) =

2∑
i=1

(
1 −

fi(p)

f̂i

)2

, (4)

where fi(p) are actual values of eigenfrequencies corresponding to the first two eigenmodes with dom-
inant bending deformation and f̂i are measured eigenfrequencies (1735.35 Hz and 4687.37 Hz) corre-
sponding to these eigenmodes.

Tab. 1 Goal, initial and final values of the tuned eigenfrequencies for particular parameter constraints

Goal Initial values Final values

f1 [Hz] 1735.35 1663.27 1735.36
f2 [Hz] 4687.37 4824.39 4687.36
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Fig. 4 Evolution of the objective function value during the optimization process
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Fig. 5 Evolution of the model parameters during the optimization process

The parameters were constrained by lower and upper bounds and the optimization process was
performed using gradient based algorithms [6]. Chosen results of the tuning are shown in Tab. 1. The
dependencies of the objective function value and values of the optimization parameters in the course of
the optimization process are shown in Figs 4 and 5.

5 CONCLUSIONS
The suitable approach for the experimental modal analysis of lightweight rotors was presented

in this paper together with the succesive usage of the measurement results for the model parameter
identification. The common rotating beam finite element was used for the modelling of rotors. However
the introduced parameter tuning procedure can be generalized for other types of rotor mathematical
models such as solid finite elements etc.

The measurement can be also employed to increase the precision of an already executed con-
ventional experimental modal analysis.
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[6] NOCEDAL, J. & WRIGHT, S.J. Numerical optimization. New York : Springer, 1999. ISBN-10:

0387303030

98


