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DYNAMICKÁ ANALÝZA RÁZOVÉHO KMITÁNÍ SOUSTAVY S OZUBENÝM PŘEVODEM

Abstract

The mechanical systems with impact motion introduce a large class of mechanical devices.
Impact oscillations are usually perceived as undesirable and harmful dynamic phenomena. However,
the impact motions can have positive effects (impact forming machines, drop hammers, impact presses,
etc.). The contribution presents a methodology of modelling of mechanical systems with contacts which
include normal forces. Such systems are described by non-smooth mathematical models, and specific
numerical strategies have to be employed to solve them (smoothing method, switch method, event
driven method). The methodology will be tested on a simplified model of test single-stage transmission.

Abstrakt

Široká třída aplikací je založena na přítomnosti rázových dějů v systému. Kmitání soustav s
rázy je obvykle chápáno jako nežádoucí dynamický stav, přesto však může mít i pozitivní vliv (viz
vibrolisy, buchary, atd.). Tento příspěvek představuje způsoby modelování mechanických soustav s
kontakty, které uvažují normálové síly. Podobné systémy jsou popsány nehladkými matematickými
modely, které vyžadují užití speciálních způsobů numerické integrace pohybových rovnic (metoda zh-
ladčení nehladkých funkcí, přepínací model, metoda řízení integrace událostmi). Zmíněná metodologie
je testována na zjednodušeném modelu testovací převodovky.
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1 INTRODUCTION
Impact motions appear in many phenomena both in the nature and in the technical applica-

tions. In engineering mechanics, there is often necessary to struggle with dynamical effects caused by
presence of construction clearances, etc. Such motions cause an increase of mechanical stress and a
reduction of lifetime, and that is why they are usually perceived as undesirable phenomena. However,
except for these cases, there are a lot of devices directly based on impact vibrations, e.g. impact-forming
machines, drop hammers, impact presses etc. As shown on mentioned examples, it is necessary to look
for suitable mathematical models of these systems.

Impact motion phenomena are a typical example of large class of technical applications called
non-smooth systems. These devices are described by mathematical models which include non-smooth
vector fields. Except for impacts, there are other phenomena such as dry friction that appear in dynamics
of non-smooth systems. In electronics, there is an analogy with non-smooth mechanical systems -
typical electrical element with non-smooth characteristics is e.g. Zener diode.
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When using standard ODE solvers to find the numerical solution of non-smooth mathematical
models, there is a lot of potential problems, near discontinuity surface in particular. To find the solu-
tion of non-smooth systems, special numerical strategies are required. One of the possible ways is a
formulation of mathematical model as a system of ordinary differential equation and subsequent refor-
mulation as differential inclusion. This procedure is known as Filippov convex method. There are a few
methods how to solve such systems.

2 MATHEMATICAL MODEL OF MECHANICAL SYSTEM WITH CLEARANCES
— GENERAL DESCRIPTION
A mathematical model of vibrating discrete mechanical system with n degrees of freedom is

considered. In the system, there are clearances which cause non-smooth motion. We focus on special
type of systems with clearance. For the motion within clearance, the mathematical model in standard
matrix form is considered

Mq̈(t) + Bq̇(t) + Kq(t) = f (t), (1)

where t ≥ 0 is time, M ,B,K ∈ Rn,n are mass matrix, damping matrix and stiffness matrix, respectively,
and q(t) ∈ Rn is vector of generalized coordinates. Vector f (t) describes excitation forces of the system.
For motion in contact phase (not in clearance), a new viscoelastic coupling activates and the damping
matrix and stiffness matrix change structure to another form Bk,Kk which describes moreover the
contact-stiffness properties. It is advantageous to reformulate mathematical model of the system in
another way and transform it from configuration space to state space. Generally, this is the way to
rewrite system of n differential equations of second order to system of 2n differential equations of first
order. Using trivial identity Mq̇ −Mq̇ = 0, the model (1) can be rewritten into new form

u̇ = Au + F (t, q), (2)

where u is state vector, A is so-called system matrix and F is vector of right-hand side, all defined by

u =

[
q
q̇

]
, A = −

[
0 −E

M −1K M −1B

]
, F =

[
0

M −1f

]
, (3)

where E is identity matrix. In the system with clearances, we can define switching boundary functions
hi(u), i = 1 . . . nh as the functions where one smooth vector field changes to another smooth vector field.
These functions make the whole state space non-smooth. Further, system with one two-sided impact is
considered, i.e. nh = 2. In case of longitudinally vibrating system with possible contact between i-th
and j-th mass, the switching boundary functions can be defined by

h1(u) = q j − qi − δ,
h2(u) = qi − q j,

(4)

where δ is clearance between i-th and j-th mass in initial position. Now, it is possible to formulate
subspacesV−,V+ of state space as the spaces which are separated by the switching boundary functions
hi(u) and h j(u). Both of these subspaces are smooth, but there is non-smoothness on the switching
boundary. It implies that [1]

V− = {u ∈ R2n : h1(u) < 0 ∧ h2(u) < 0} ,
V+ = {u ∈ R2n : h1(u) > 0 ∨ h2(u) > 0} , (5)

The model in the state space can be written in following form

u̇ = f (t,u) =

{
f−(t,u), u ∈ V−,
f+(t,u), u ∈ V+,

(6)
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where f−(t,u),f+(t,u) using the coefficient matrices defined above, are vectors in the form

f−(t,u) = −

[
0 −E

M −1K M −1B

] [
q
q̇

]
+ F− = A−u + F−, (7)

f+(t,u) = −

[
0 −E

M −1Kk M −1Bk

] [
q
q̇

]
+ F+ = A+u + F+. (8)

These matrices characterize different topology of the structure in a phase of contact and in a phase
without contact - in motion with contact between bodies, there are some extra viscoelastic couplings
activated. To find a solution of the system (6), the numerical methods must be used in general.

3 APPROACHES TO NUMERICAL SOLUTION OF NON-SMOOTH SYSTEMS
To find numerical solution of non-smooth systems, it is possible to use different approaches how

to fit standard numerical solvers of ODEs for non-smooth system. In non-smooth phenomena, there
is the biggest problem with numerical solution around a discontinuity surface, where the solution is
susceptible to oscillate between two smooth surfaces around and to collapse.

In neighborhood of the discontinuity surface, there is often the jump in state space defined by
functions like signum or Heaviside function. The first method how to find numerical solution of non-
smooth system is called smoothing method and it is based on replacing these functions with smooth
function. E.g. the sign and Heaviside function H(.) can be approximated by

sign(x) =
2
π

arctan(εx), H(x) =
1
2

(1 + sign(x)) , ε � 1. (9)

The smoothing method is usable for large class of systems, but there are many examples, when the
method does not work fine, in particular in systems with sliding surfaces, e.g. systems with dry friction.

Another approach to reach numerical solution is called switch model [1]. This method is based
on direct switching between subspaces around the switching boundary. In neighborhood of the switch-
ing boundary the belt of width 2η (η is scalar parameter of numerical method) is considered and if the
boundary of the belt is crossed, the vector field is changed. In numerical integration function, there is
used notation "if . . . then", which defines the space, where the next step of integration is applied. There
are sophisticated methods to cope with sliding modes around the switching boundary using the switch
model.

Another method to find numerical solution is called event driven integration method. In this
case, the numerical solution is looked for in one smooth vector field, while the event occurs. Then
the integration is stopped and the kinematic quantities (displacement and velocities of all bodies) are
saved. In this phase, the constitutive equations are used and generally, it is necessary to solve linear
complementarity problem to find out, how the system will be moving in the future. The kinematic
quantities are used as initial conditions in next integration step. The system is integrated in smooth
vector field while new event occurs.

4 APPLICATION TO TEST SINGLE-STAGE TRANSMISSION
As an example, the above theory was applied to a mathematical model of test single-stage trans-

mission mentioned in [2]. For only qualitative analysis of the impact motion, whole system was simpli-
fied to system with four degrees of freedom. Four discs are considered, connected by flexible shafts and
gearing between stages. In gearing, two-sided impact motion is considered with kinematic transmission
error in gearing ∆(t), which is considered as a harmonic function - in general, it could be considered as
periodical (polyharmonic) function. Generalized coordinates are rotations ϕi = qi of all considered discs
Ii, i = 1, . . . , 4 (see fig. 1). In initial position, there is clearance µ between teeth in gearing. Deformation
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Fig. 1 Schematic model of simplified test single-stage transmission

of gearing on mesh line is given in form

dz = r3ϕ3 − r2ϕ2 + ∆(t). (10)

Mathematical model of system can be completed in form (1) e.g. using Lagrange’s equations [3]

Mq̈ + Bq̇ + Kq = fI(t) + fE(t) + fN(q), (11)

where M ,B,K are mass matrix, damping matrix and stiffness matrix in form

M = diag {Ii} , , i = 1, . . . 4, K =


k1 −k1 0 0
−k1 k1 0 0
0 0 k2 −k2

0 0 −k2 k2

 , B = αK, α ∈ R+. (12)

In (12), Ii, i = 1, . . . 4, are moments of inertia of discs, k1, k2 are stiffnesses of shafts, kk is contact
stiffness of gearing and α is coefficient of proportional damping. On right-hand side of (11) are vector
of internal excitation by kinematic transmission error of gearing fI(t), vector of external excitation
forces fE(t) and vector of nonlinear forces fN(q), all defined by

fI(t) = −kz∆(t)


0
−rp

rk

0

 , fE(t) ∈ R4, fN(t) =


0

rp fn

−rk fn

0

 , (13)

where rp = r2, rk = r3 are radii of pinion and gear. Non-linear function of force transmitted by gearing
fn is given as

fn =


kzdz, dz > 0,
0, dz ∈ 〈−µ, 0〉,
kz(dz − µ), dz < −µ.

(14)

Switching boundary functions are defined analogically to (4) in the form fit to torsional coordinates as
h1 = dz, h2 = dz + µ. To use smoothing method, it is necessary to reformulate problem as one analytical
function. The non-smooth function fn can be rewritten using Heaviside function H(.) as

fn = kzdz − kzdzH(−dz) + kz(dz + µ)H(−(dz + µ)). (15)

For switch method, the notation of fn directly from (14) was used for numerical implementation.
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4.1 Discussion of gained results
The numerical solution was accomplished with a relative tolerance of 10−4 and absolute toler-

ance of 10−4, using variable-step Runge-Kutta method of fourth order implemented in MATLAB as
ode45. Simulation of motion was accomplished for 0.2 s. According numerical results, the time do-
main 〈0, 0.2〉 s is large enough to die down of transient motions. In case of smoothing method, two
possible notations were used for Heaviside function. First, the approximation (15) with ε = 1011 was
used, second the standard Heaviside function implemented in MATLAB was used. The computational
times and numbers of integration steps are compared in tab. 1 for the mentioned approaches.

Tab. 1 Efficiency of used numerical approaches

Method Computational time [s] Number of integration steps
Switch method 7.675758 25489
Smoothing method 6.016781 25509
Switch method (using Heaviside f.) 7.691480 25489

The numerical simulation of nonlinear behavior of the model was guided by two parameters, by
external constant torque M and by rotational speed of the driving shaft n. The external torque M acts
on the flywheels and corresponds to a given power transmitted by the gear drive. These two parameters
were used to perform a qualitative analysis of the gear drive response to internal transmission error
in gearing and mutually to external constant torque. As an indicator of system nonlinear behavior, the
bifurcation diagram is used along with the phase trajectories.
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Fig. 2 Bifurcation diagram - maxima (gray) and minima (black) of deformation dz in gearing in depen-
dence on revolutions per minute

Fig. 2 displays a bifurcation diagram which was constructed for chosen value of the external
torque M =100 Nm. It shows maxima and minima of deformation dz in gearing in dependence on
revolutions per minute. From this diagram, changes in quality of oscillations are obvious. There appear
following phenomena. There are jumps in the amplitude of the response which are followed by period-
doubling bifurcation and further by transition to chaotic motion. This scenarios repeats from 1480 rpm
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Fig. 3 Examples of phase trajectories of gearing deformation dz in gearing

up to 1870 rpm. After that, a further amplitude jump appears which signifies a transition to both sided
impact motion within the clearance of the gear mesh. The chaotic impact motion changes to quasi-
periodic motion at 2100 rpm and then after reaching the value of 2360, the motion becomes again
periodic. To have a clearer view to the behavior represented by bifurcation diagram, phase trajectories
of gearing deformation for chosen rotational speeds are plotted in fig. 3.

5 CONCLUSIONS
The general approaches for non-smooth systems were discussed in context of the impact mo-

tion. The simple system with clearance was mentioned as an example of the large class of problems.
The particular numerical realization was implemented for the test gear drive and numerical solution
of motion of the system was accomplished. In this case, the smoothing method is the most efficient
and switch method is the most inefficient one. The difference between analytical approximation of
Heaviside function by arcustangens function and direct use of Heaviside function in MATLAB was
shown. There is the same number of integration steps as in case of switch model but the computational
time is lower. The bifurcation diagram shows how the quality of oscillations changes with changing of
rotational speed of the drive and gives important information about impact vibrations.
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