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Abstract 

Pyrolysis is a suitable recycling method that leads to a creation of 3 pyrolyzed phases (gas, 

liquid and solid) and every phase has its possible utilisation. Pyrolysis is a complicated process and 

its description in the light of system analysis by means co called transport system enables its reduc-

tion on a system of masses transport and a system of energy transport. A transport system consists of 

accumulative elements (a reservoir), transformation elements (a pyrolysis retort, a burner) and 

transport elements (pipes). In a system of pyrolysis, by means of transformation elements, the follow-

ing actions are realised: a flow of mass and energy, transformation of input material to a pyrolyzed 

phase in a transformation element and storage of products in accumulative elements. Quantity and 

composition of pyrolyzed products are dependent on process conditions of a pyrolysis especially 

temperature. Pyrolysis of scrap tyres was tested in a laboratory thermic analyzer and in semi opera-

tional unit of Pyromatic. Presented article presents results obtained from both devices.  

Abstrakt 

Pyrolýza je vhodným recyklačním procesem, při kterém z organického materiálu vznikají 

produkty tří fází (plyn, kapalina polokoks). Každý z těchto produktů má své využití. Systémová 

analýza umožňuje pomocí transportního systému popsat pyrolýzu jako transport hmoty a energie. 

Transportní systém je složen ze 3 druhů prvků – akumulačních (nádoby různého typu), 

transformačních (pyrolýzní retorta, hořák) a transportních (potrubí). V takto definovaném systému 

dochází k přeměně hmoty a energie vstupního materiálu v transformačních prvcích na jednotlivé 

pyrolýzní fáze, které jsou následně ukládány v akumulačních prvcích. Kvantita a kvalita jednotlivých 

pyrolýzních fází závisí na procesních podmínkách pyrolýzy, především na teplotě. Pyrolýza odpadní 

pryže byla testována v laboratorním termickém analyzátoru a následně v poloprovozním zařízení 

Pyromatic. Tento článek se v souladu se systémovou analýzou zabývá výsledky experimentálních 

měření na obou těchto zařízeních.  

                                                                                                                                                                   
*  Ing. Zuzana MIKULOVÁ, Ph.D., VŠB – Technical University of Ostrava, Faculty of Metallurgy and 

Materials Engineering, Department of Chemistry, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic, 

 tel.: +420 597 324 947, e-mail: zuzana.mikulova@vsb.cz 
**  Ing. Stanislav HONUS, Ph.D., VŠB – Technical University of Ostrava, Faculty of Mechanical Engineering, 

 Department of Energy Engineering, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic,  

 tel.: +420 597 323 270, e-mail: stanislav.honus@vsb.cz 
*** prof. Ing. Dagmar JUCHELKOVÁ, Ph.D., VŠB – Technical University of Ostrava, Faculty of Mechanical 

 Engineering, Department of Energy Engineering, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic,  

 tel.: +420 597  325 175, e-mail: dagmar.juchelkova@vsb.cz 
**** prof. Ing. Vladimír STRAKOŠ, DrSc., VŠB – Technical University of Ostrava, Centre ENET, 17. listopadu 

 15/2172, 708 33 Ostrava, Czech Republic, tel.: +420 597 323 301, e-mail: vladimir.strakos@vsb.cz 

 



46 

1  INTRODUCTION 
Production, and consumption of polymers and consequently, waste created by them, increase 

very sharply every year because these materials have excellent properties (they are resistant, light, 

workable, etc.) and nowadays are irreplaceable from the point of view of human life. Annual 

consumption of plastic in west Europe is about 60 million tons [1]. OZO Ostrava s.r.o. (Ltd.) 

company that is engaged in cartage and disposal of waste from the city of Ostrava (the third biggest 

city in the Czech Republic) and its surrounding villages manipulated with 86.61 thousand tons of 

municipal solid waste (MSW) in 2009. From that quantity plastics formed 17 wt. % of the MSW. In 

this context, there are five main types of plastics contained in MSW - polyethylene of high and low 

density (18 wt. %), PET, polystyrene, polypropylene, rubber and other kinds of plastics in lower 

quantity [2].  

Upgrading of polymers waste is a necessity for environmental protection and sustainable 

development. However, nowadays, waste disposal and incineration of polymers (connected with a 

number of environmental problems, e.g. formation of dioxins) are the most commonly used methods.  

Pyrolysis of polymers waste can be a perspective way for their conversion into valuable 

products and for a reduction of their volume. Generally, pyrolysis is a thermal degradation (without 

oxygen agent) leading to char, oil and gas production, which have a big potential as useful end 

products.  

Many articles were published about pyrolysis especially in laboratory scale but there are still 

unexplained areas which can contribute to better understanding of pyrolysis process and better 

utilisation of waste material processed by pyrolysis in semi operation scale. Simplification of 

pyrolysis process by system analysis and connection of knowledge from laboratory and semi 

operation scale pyrolysis affords better look at pyrolysis process, at better understanding of material 

and energy transportation, at transformation of waste material via thermo chemical reaction in a 

pyrolysis chamber and at accumulation of pyrolysis phases. The aim of this work is theoretical and 

practical understanding of pyrolysis of scrap tyres under various conditions and scales of pyrolysis 

unit. We try to find optimal conditions of pyrolysis of scrap tyres leading to maximum quality and 

quantity of solid and gas yields. 

Many experimental studies (from laboratory to semi operation scale) on the disposal of scrap 

tyres have already been reported by various researchers but many problems are still far from solution. 

Due to high calorific value of pyrolysis products they can be used to support pyrolysis process. 

Liquid and solid phases can be also stored and consequence used for next valorization (e.g. ash-free 

combustion or rubber industry) [3]. Gas phase can be used in situ e.g. for gas turbines. Baggio et al. 

[4] designed pyrolysis as a system which consists of two pyrolysis lines connected with two gas 

turbines. The system described the energy and the environmental impact of the pyrolysis of municipal 

solid waste. Temperature affected only the distribution of the electric production between turbines 

while whole system did not effected by temperature. Pyrolysis can be also described by mathematical 

model of heat and mass processes [5]. This model enabled quantitative understanding of scrap tyres 

pyrolysis. Optimal pyrolysis conditions depends on types of pyrolysis unit and material and not only 

temperature but also heating rates influenced the product composition and kinetic. For example, 

Barboti et al. [6] studied pyrolysis of scrap tyres in a stainless steel tubular reactor and optimum 

conditions using computer program “Optimization Techniques”. The maximum yields of pyrolysis 

solid and liquid phase were temperature 430 °C, particle size 10 mm and a flow rate of nitrogen 

0.35 m3.h-1.answer. 

 

1.1  Theoretical 

A system is a hypothetical concept that people choose for easier view on a real object around 

themselves. A system is chosen for better understanding and operating of features of a real difficult 

object. A system is a simplified real object and we can process it, change its status or change its 

feature. System approach is concerned with solving of problems in complexity.  

Generally, a system is an ordered set of elements. Elements interact among each other by 

mutual links. An element is a part of system which is further impartible and it has 

an undistinguishable structure. A subsystem is a subset of elements and links that are segregated from 
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a system for some reason. Such subsystem is considered to be a new system. Fig. 1 provides 

documentary evidence for a scheme of a system and its surrounding. 

 

Element 2
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Subsystem
surronding

Internal link

 External link

 

Fig. 1 Scheme of System. 

First step of a system formation is to determine a kind of a system. There are many types of 

systems but according to Strakoš [7] every system looks like a “transportation system”. However, 

there is a necessity to specify and to define what will be transported in this system whether it deals 

with material, energy, people, information, etc. or not. In this case we will choose elements that 

participate in transportation, in transformation (a change of features) or in accumulation (stocking) of 

a selected medium. From this point of view, systems are composed of three types of elements: 

 Transportation elements (e.g. streets, pipelines, routes, etc.) 

 Transformation elements (e.g. a cogenerative unit, an engine, a computer, etc.) 

 Accumulative elements (e.g. a chamber, a reservoir, a memory in a computer, etc.). 

 

For a system formation there are three concepts which are very important - (i) a structure of 

the system, (ii) static features of the system and (iii) dynamic features of the system. Every system 

exists in some surroundings and it is important to define only an essential surrounding which have 

a direct contact with the system. We are not interested in links in surroundings of the studied system.  

System analysis describes system performance of a system with known structure. On the 

opposite side, system synthesis describes system performance of a system with an unknown structure. 

The analysis provides a unique solution, the synthesis does not. Systems with various structures can 

have the same performance. It is very important to find a structure that is most relevant to a given 

performance in the system theory [8]. The system analysis permits to analyse connections between 

a technological and an energetical subsystem, as well as internal connections in the subsystems.  

2  EXPERIMENTAL 
Pyrolysis experiments have been carried out using a simultaneous laboratory apparatus TG-

DTA NETZSCH STA 409 EP. All the experiments have been conducted in the crucibles (aluminium 

oxide) in dynamic inert atmosphere of argon (with the flow rate of 100 cm3 min-1) with heating rate of 

10 °C/min and maximum temperature 380, 450, 500 and 1200 °C. Material for pyrolysis used during 

the presented research was scrap tyres (denoted ST) from personal cars and its proximate and 

elemental analysis is documented in Table 1.  
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Tab. 1. Proximate and elemental analysis of ST, gross calorific value (GCV) of ST. 

Moisture Volatile F. carbon Ash C H N S O GCV 

[wt.%] [%] [J.g-1] 

0.7 62.3 32.7 4.3 85.3 0.3 0.3 2.3 0.01 38034 

 

Pyrolysis was also tested in a semi operational range in a pyrolysis device of Pyromatic  

(Fig. 2). This unit processes organic raw materials at intake of 50 kg up to 150 kg per an hour. It deals 

especially with waste rubber, selected parts of municipal waste and unemployed parts of assorted 

waste. The unit is created by a few partial devices that enable to execute the whole technological 

process. That means a transport of input material to a retort, heating the material up under barred 

access of air, modifications of created pyrolyzed gas and transport of solid and liquid products. 

Delivery of input material is realised by a belt conveyer that feeds it to a hopper from which it 

is advanced further by means of a snail conveyer to a reactor. The raw material is under parallel 

shifting pyrolyzed in a snail reactor. The shift is realised by snails - two primary ones and one 

secondary one which advances material back to the input part of the retort.   

Pyrolysis proceeds under temperature from 500 °C to 800 °C and time of material stay in the 

retort ranges from 45 min to 1 hour. Created pyrolyzed gas is taken from the retort to a cyclone and 

consequently to aerial and hydraulic coolers. Heat for material heating up is supplied by indirect 

heating from five gas burning sections that are placed in sequence under the retort. Burners’ 

arrangement under the whole retort's length enables to regulate required thermal intake to individual 

sections in dependence on already achieved temperature of pyrolyzed material. For the time being, 

natural gas has been used for heating. Maximal thermal input of the furnace is 200 kW.   

 

Fig. 2. Pyrolysis unit Pyromatic. 

3  RESULTS AND DISSCUSION 
Pyrolysis is a system defined as a set of installations and equipment with internal relationships 

between them and external relationships with the environment. This type of a system is divided into 

distinguished subsystems – in a technological subsystem (consisting of technological processes) and 

an energy subsystem (energy, heat). If pyrolysis is a transportation system, we can reduce it and 

simplify it to a flow of mass and a flow of energy. Then, this type of the transportation system 

consists of transportation of material (Fig. 3) or transportation of energy (Fig. 4). 
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Fig. 3. Pyrolysis as a transportation system of material. 

 

We can deduce that pyrolysis as a transportation system consists of three types of elements: 

(i) a pyrolysis chamber and a burner are transformation elements (in Fig. 3 a dotted rectangle). 

Material (ST) and energy (heat) is delivered into a pyrolysis chamber. Inside the pyrolysis chamber, 

waste material warms up and thermo chemical reactions take place here. From the pyrolysis chamber 

two streams flow away: (i) a solid phase and (ii) gas (hot volatiles). The solid phase is after cooling 

collected in a reservoir. This phase is composed of carbon black and inorganic compounds and can be 

used in rubber or pigment industry. Volatiles are after cleaning them in a cyclone cooled and 

consequently separated into two phases – gas and liquid phases. Gas phase contains light 

hydrocarbons (less than C6). The gas phase has high gross calorific value and can be used for 

example for electricity production. High hydrocarbons (more than C6 or aromatic compounds) form a 

liquid phase. Liquid phase can be used in fuel industry. Natural gas is fed into burner where it is 

oxidized. Heat is formed for heating the pyrolysis chamber up 

(ii) Reservoirs for waste, natural gas and output pyrolysis phases are accumulative elements 

(in Fig. 3 a line rectangle). 

(iii) Pipelines with different section and length are transportation elements. A cooler is 

generally a transportation element too because warm gas flows around cooling medium and its heat is 

taken away. The heat is transported into a cooler by warm gas and taken away by cooling medium.  
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Fig. 4. Energy flows in Pyromatic pyrolysis system. 

Key: 

1.1 Energy input in material  

1.2 - 1.6 Input of chemical and physical heat in heating has 

(natural gas) 

1.7 - 1.11 Input of physical heat in burning air  

1.12 Input of physical heat in cooling air  

1.13 Input of physical heat in cooling water 

2.1 Thermal losses through unit wall by free convection 

(around reactor) 

2.2 Thermal losses through unit wall by radiation (around 

reactor) 

2.3 Thermal losses through unit wall by free convection 

(around cyclone) 

2.4 Thermal losses through unit wall by radiation (around 

cyclone) 

2.5 Chemical energy in solid product  

2.6 Loss by physical heat in solid product 

2.7 Chemical energy in solid residue from cyclone  

2.8 Loss by physical heat in solid residue from cyclone  

2.9 Thermal loss in waste burned gases  

 

2.10 Chemical energy in liquid product  

2.11 Loss by physical heat in liquid product  

2.12 Loss by physical heat in heated cooling air  

2.13 Loss by physical heat in heated cooling water 

2.14 Chemical energy in gas product  

2.15 Physical heat in gas product 

3.1 El. input power for belt conveyor  

3.2 El. input power for scarper  

3.3 El. input power for screw feeder  

3.4 El. input power for left screw feeder 

3.5 El. input power for right screw feeder 

3.6 El. input power for secondary screw feeder 

3.7 El. input power for screw feeder of solid product 

3.8 El. input power for burned gases fan 

3.9 El. input power for air cooler  

3.10 El. input power for liquid stirrer  

3.11 El. input power for blower 

 

Fig. 3 and Fig. 4 are simplified due to absence of transportation of cooling medium, 

transformation of gas phase to electricity, transport of natural gas etc. because these elements belong 

to sub-systems around our defined system. 

On a basis of these figures, pyrolysis can be divided to the following processes: 

 preparation of input material (warming, expression of air and water vapours, enter-

ing the pyrolysis chamber), 
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 pyrolysis (warming to required temperature, external and internal transport of heat 

and mass, chemical reaction, separation of gas and solid phase), 

 cleaning (separation of a solid phase from gas in a cyclone), 

 cooling (cooling of gas and solid phase and heat removal), 

 storage (storage of input and output materials). 

 

Tab. 2 Mass and energy flow in system Pyromatic (selected flow). 

  Temperature [°C] 

  500 550 600 650 

Input 

Mass/volume 

Mass flow-material [kg.s-1] 0.0083 0.0083 0.0083 0.0083 

Flow rate-natural gas [m3
N.s-1] 0.0011 0.0016 0.0019 0.0022 

Input energy El. energy 3.1-3.11 [kWh.30min-1] 1.37 1.72 1.82 1.93 

Power in NG 1.2-1.6 [kW] 40.20 58.27 69.75 79.69 

Output 

Mass/volume 

Flow rate-waste combustion [m3
N.s-1] 0.0284 0.0412 0.0495 0.0566 

Volume  flow- gas phase [m3
N.s-1] 0.0018 0.0023 0.0021 0.0028 

Mass flow-solid phase [kg.s-1] 0.0034 0.0031 0.0030 0.0026 

Mass flow-liquid phase [kg.s-1] 0.0027 0.0029 0.0028 0.0027 

Output 

energy 

Power in waste combustion 2.9 [kW] 10.99 18.07 22.84 29.34 

Power in PG (chem., NCV) 2.14 [kW] 55.76 64.94 69.62 88.72 

Heat loss 2.1-2.4 [kW] 10.70 12.73 14.96 17.09 

 

Production of energy amount depends on energy consumption of elements of the system. For 

this reason there is interdependence between production of energy and elements in the system and the 

system can be solved in more complex way. Energy flow in a concrete system of pyrolysis is 

described in Fig. 4. The figure is related to Pyromatic pyrolysis unit described above where various 

kinds of materials under various process conditions have been tested. The aim of tests and 

measurements in relation to the article subject is a determination of transformation degree of inputs to 

the system (chemical energy of heating gas and a charge) per individual outputs from the systems 

(chemical energy and material heat of individual products, thermal losses) and description of all 

energy flows in Pyromatic device as a system of pyrolysis.  

Values of individual energy flows into system elements are stated in Table 2. These values 

were measured and analysed during a continual operation of the pyrolysis unit. Individual flows are 

numbered in accordance with Fig. 4. Calorific value of pyrolysis gas was determined on a base of 

chemical composition analysis.  

From Fig. 4 and on base of concrete data from Table 2, a transformation process of heating 

gas chemical energy to physical energy of products of combustion is obvious. The energy is burned 

off on the one hand on the pyrolysis itself and on the other hand on reimbursement of thermal losses, 

(flue loss and heat transmission to surroundings). Chemical energy from mass of input material is 

changed by influence of physical energy of burned gases to chemical energy of gas, liquid and solid 

product then. Mechanism of this transformation is constant. However, with a change of process 

conditions (temperature, pressure), the amount of chemical energy in individual products (per a unit) 

is different. Further, it results from Table 2 that flow of gas pyrolyzed phase and its physical heat 

increase with increased temperature of the pyrolysis process. On the opposite, the flow of liquid and 

solid pyrolyzed phase decreases. At the same time, energetical quality (net calorific value) of gas 

product falls. Further, a flow of heating gas, volume flow of burned gases and thermal losses of the 

whole device increase with increasing temperature of the pyrolysis. Understandably, consumption of 

electrical energy per 30 min of operation under constant input power for all temperatures differs 

minimally.   
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3.1  Transportation Elements 

A transportation element is a basic element in transportation systems. According to Fig. 3 

a transportation element removes material (waste) or energy (heat) from one element to another 

element. Generally, a transportation element has one input and one output and transports whatever we 

need. An input of energy, sometimes also water and air, is a necessity for realization of a transport. 

During the transportation some energy is consumed. It means energy, water or air are released to 

other elements. A transportation element picks material or energy up for transport from a place where 

material or energy is stored (e.g. a reservoir, storage, a container or others). Technical support is 

a system which provides all needed for a transportation element.    

3.2  Transformation Elements 

Thermo gravimetry and kinetics 

A transformation element changes properties or a form of input magnitude – material, raw 

material, energy or others. This element is generally the most important element in the system 

because this element transforms raw material into end products or energy. On the other hand, it is 

very important to point out that without transportation and accumulation elements this element will 

not work. 
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Fig. 5. TG and DTG curves of pyrolysis of ST, measurement conditions: 10°C/min,  

max. temperature 1200°C. 

 

Pyrolysis of ST proceeds in two stages (Fig. 5). First peak at temperature about 359 °C corre-

sponds to oils, plasticators and additives vaporization. Second peak at temperature 438 °C fits into 

rubber decomposition. ST are composed of three types of rubbers – nature rubber (NR), butadiene 

rubber (BR) and styrene-butadiene rubber (SBR). Maximum weight loss of NR is at 373 °C, of BR at 

372 °C and of SBR at 372 °C and at 429-460 °C. According to DTG curves these three rubbers de-

compose together over temperature region 372-460 °C [9], that respond with our measurement.  

 

Tab. 3. Weight loss and characteristic temperatures of pyrolysis of ST in a laboratory apparatus. 

Temperature Weight loss I
1 Tmax

2 
F

3 

[°C] [wt.%] [°C] 

1200 66 05 359. 438 70 

500 64 15 359. 431 00 

450 52 04 357.000 50 

380 24 11 351.000 80 
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The characteristic temperatures determined from DTG curves are documented in Table 3, in-

cluding these parameters: temperature of (i) initial weight loss (TI), (ii) the end of the reaction (TF) 

and (iii) maximum pyrolysis rate (Tmax). Tmax is related to material structure and usually plastics with 

similar structure have almost the same value [10]. Accuracy of determination of TI/TF is quite diffi-

cult due to deciding when weight loss begins/ends, whereas Tmax is easier to determine because it 

responds to the maximum of peak. DTG curves document that pyrolysis of ST start at about 305 °C 

and end at about 570 °C. Above temperature 600 °C is not weight loss on the upgrade and its value is 

66 wt. %.  

Heat and mass transport affect pyrolysis rate and there are three transport processes that 

influence a total rate: (i) intra particle transport that is affected by particle size, (ii) particle-to-fluid 

transport that depends on inert gas flow rate and particle size and (iii) inter particle transport that 

depends on a number of layers of particles in a sample basket. For a fixed particle size and for one 

basket, the third process can be studied by changing a weight of an initial sample [11]. For these 

reason characteristic temperatures of pyrolysis in a semi operational range pyrolysis unit are shifted 

to higher temperatures due to bigger particle size, weight of ST and larger scale of Pyromatic.  

Product yields of pyrolysis 

The gas, liquid and solid phases obtained in the ST pyrolysis in Pyromatic carried out at 500, 

550, 600 and 650 °C are presented in Table 4. These temperatures were chosen according to thermo-

gravimetric measurements. It can be seen from this table that at every temperature pyrolysis was 

complete because gas and liquid yields are close to theoretical values expected from TG curves of ST 

analysis (66 wt.%). At the temperature 600 and 650 °C amount of solid phase is higher than theoreti-

cal value derived from TG curves (34 wt.%). Literature explains that a certain amount of char or 

coke-like carbonaceous material is formed in the pyrolysis of many polymeric materials, due to sec-

ondary repolymerisation reactions among the polymer-derived products. With increasing temperature 

increases amount of gas phase and conversely decreases amount of liquid phase. This is probably 

caused by the strong thermal cracking at this temperature [12]. 

 

Tab. 4. Product yields from pyrolysis of scrap tyres in Pyromatic aparatus. 
Temperature Gas phase Liquid phase Solid phase 

[°C] [wt.%] 

500 26.5 32.5 41.0 

550 27.8 34.9 37.3 

600 30.2 33.7 36.1 

650 36.2 32.5 31.3 

 

Table 5 lists the composition of gas phase. The gases were mostly hydrogen and light hydro-

carbons. The presence of CO and CO2 in the gas phase is derived from decarbonylation and decar-

boxylation reactions (from oxygenated organic compounds - stearic acid, extender oils or inorganic 

components – CaCO3, metal oxides ) or secondary oxidation reactions of carbon [13]. An increase of 

temperature led to increase in all gases except CO and CO2. Gross calorific value (GCV) is for every 

temperature comparable and its value is about 34 MJ.m-3. This value is comparable with other authors 

[13 - 15]. 
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Tab. 5. Average abundance of important components in gas from pyrolysis of  scrap tyres  

in Pyromatic 

Temp. H2 CO CO2 CH4 C2H4 C2H6 ∑C3HY ∑C4HY ∑C5HY ∑C6HY GCV 

[°C] [%] [MJ.m
-3

] 

500 12.4 2.8 2.4 17.9 3.0 4.4 5.6 4.2 4.5 0.8 33.9 

550 13.3 3.7 2.3 19.8 3.9 4.7 5.2 3.6 2.4 1.0 31.4 

600 22.2 3.1 1.9 29.2 4.0 4.9 5.4 3.7 2.5 1.1 37.1 

650 28.3 2.9 1.4 4.6 5.2 6.3 7.0 4.8 3.2 1.4 34.7 

 

The elemental composition, GCV and moisture and ash content of the 500 to 650 °C pyrolysis 

solid phase are presented in Table 6. With increasing temperature increase amount of carbon and 

GCV. Compare to commercial carbon blacks, composition of solid phase pyrolysed at 650 °C has the 

most comparable composition. [12] 

 

Tab. 6. Elemental analysis of pyrolysis carbon black. 
Temperature C H N S O Moisture Ash GCV 

[°C] [%] [MJ.kg-1] 

500 85.13 0.53 0.18 2.44 0.00 1.71 10.67 29.72 

550 85.84 0.54 0.24 2.49 0.00 1.38 10.21 30.42 

600 86.31 0.58 0.27 2.63 0.00 1.22 10.54 30.32 

650 87.88 0.57 0.21 2.19 0.03 0.97 9.09 30.91 

 

Commercial carbon black contains less amount of ash. The ash containing in the pyrolytic 

residues come from the inorganic fillers (stell excluded) of the original ST. With increasing amount 

of inorganic compounds increased amount of ash that confirms Fig.  
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Fig. 6. Amount of ash in pyrolytic solid phase depending on inorganic compounds. 

3.3  Accumulative Elements 

Reservoir is one from accumulative elements where material or energy is stored and 

consequently delivered to a transportation element. An accumulative element is gradually in filled – 

we sum up what is filled in inside the element. For this reason this element is very often called an 

integration element. This element has real static and dynamic properties of an integration element. 
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Reservoirs are stores, containers, gas-holders and others. Inside each reservoir there is a space for 

storing and input and output is the same. An input of a reservoir is an output from a transportation 

element and an output of a reservoir is an input to another transportation element. Energy (air or 

water) is also important for transport of that what we need.  

From the text mentioned above a question is rising – what type of the element is a real cooler? 

In general, a cooler has two inputs and two outputs and it is not a basic element of a system but 

element’s composing from several basic elements. Fig. 7 documents one from two possible 

reductions of coolers in the system and it is called semi-parallel connection. On the left side, there is 

a cooler with main stream of pyrolyzed gas from the pyrolysis retort. Pyrolyzed gas is cooled in a 

cooler and it is separated into two parts – gas phase and liquid phase. On the right side, the main 

stream is heat from warm pyrolyzed gas. Cold water is warmed by pyrolyzed gas up and at the output 

warm water is used for other applications (e.g. vapour in other production process).  

We choose one from these two reductions according to our needs. For this reason system 

analysis is so advantageous because we can choose substantial things useful for clear understanding 

of properties of analysed process.  
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Fig. 7. Two Views on Cooler, left: Main Stream is Pyrolyzed Gas, right: Main Stream is Heat. 

4  CONCLUSIONS 

Pyrolysis is a very complicated process from chemical point of view as well as from energeti-

cal point of view. The article deals with pyrolysis process description in terms of system analysis 

what enables a new look at pyrolysis as a system and easier understanding of the pyrolysis as a whole 

and further with thermogravimetric measurements and its application in a semi operational range in 

a pyrolysis device of Pyromatic.  

Pyrolysis was defined as a so-called transport system of mass and energy. A transport system 

consist of three elements - (i) a transformation element (a pyrolysis retort and a burner) in which 

energetical transformation of material proceeds, (ii) an accumulative element (reservoirs) in which 

input materials, output materials and products are stored and (iii) a transportation element (pipes) by 

which material or energy are transported. In the article, the individual mass and energy streams and 

their transformation are described in details as regards of a process in laboratory equipment as well as 

in semi operational equipment.  

Authors of the article come to the conclusions on quality and quantity of process products and 

energy demands leading to their creation. It can be said that temperature is a basic process condition 

that influences a degree of transformations in the system. On the one hand ratio of individual final 

products created from a unit of charge mass on the other hand sole features of created products in the 

system are dependant on temperature. Temperature 650 °C is the most suitable temperature for pyrol-

ysis of scrap tyres in a semi operational range in a pyrolysis device of Pyromatic. This temperature 

leads to (i) highest ratio of gas and (ii) comparable composition of solid phase to commercial  

carbon black.  

Already many articles have been written and many papers have been given on pyrolysis and 

yet, under the authors, there are still new approaches that might bring a different focus on this pro-

cess.  
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