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THE STABILITY OF THE CONVEYOR BELT PONTOON

STABILITA PONTONU PASOVEHO DOPRAVNIKU

Abstract

To lead the conveyor belt transport cross water area the pontoon are used to support the carry-
ing structure of the belts. The accident can happen when the pontoon turnover. For this reason the
pontoon stability is investigated. The stability is described by the Reed’s diagram. This can be con-
structed analytically or via numerical modeling. Both methods are described in the paper.

Abstrakt

Pfi dopravé sypkych materidlii pfes vodni plochy se jako podpory pro dopravnikové trasy
pouzivaji plovouci pontony. Obcas se stavaji zavazné nehody, kdyz dojde k pfevraceni pontonu.
Proto byla vySetfovana stabilita pontonu proti pfevrzeni. Stabilita je vyjadiena tzv. Reedovym dia-
gramem. Ten muze byt konstruovdn analyticky nebo cestou numerického modelovéani. Obé tyto
metody jsou popsany v piispévku.

1 INTRODUCTION

In the process of mining and subsequent transport of the material on water the conveyor belts
are lead on the floating pontoons. The question of stability of these pontoons is very important for the
safety of such transport traces. The problem is close to the question of stability of boats.

2 THE LIFTING FORCE

The process of floating is determined by the concurrent acting of two forces - gravitational
force and lifting force (due to hydrostatic pressure). These two forces are of the same value (the ves-
sel floats).

| /

v water level <

Fig. 1. The vessel in equilibrium and non-equilibrium position.

Ing. Jiti PODESVA, VSB - Technical University of Ostrava, Faculty of Mechanical Engineering,
Department of Mechanics, 17. listopadu 15, Ostrava-Poruba, Czech Republic, tel. (+420) 59 732 4350,
e-mail jiri.podesva@vsb.cz

237



In equilibrium position (the vessel board is horizontal) both forces lies on the same line (left
on Fig. 1.) and resulting moment is zero. In non-equilibrium position the forces lies on the different
lines (right on Fig. 1.). The resulting non-zero moment can have stabilizing (on Fig. 1.) or destabiliz-
ing effect. The amount of either stabilizing or destabilizing effect depends on the point of application
of both forces.

The point of application of gravitational force is in the centre of gravity. The position of the
centre of gravity is the subject of technical education and will not be discussed in this paper.

The lifting force is the result of hydrostatic pressure on the sides and bottom of the vessel (see
Fig. 2.). The question of the point of application of the resulting force is not quite clear.

water level

Fig. 2. The hydrostatic pressure on the vessel.

Suppose the triangular body (orthogonal triangle) in the water (see Fig. 3.).
Here: a, b and ¢ isthe dimensions of the triangle,

h is the depth of the triangle under the water level,

y is the vertical coordinate from the side a downward,

z is the coordinate along the side c,

B is the angle between the sides a and c.

The hydrostatic pressure with respect to the depth is:

p=p-g-(h+y)
where: p is the water density,
g is the gravitational acceleration (g = 9,81 m/s?),

(h+y) is the depth of the common point.
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Fig. 3. The triangular body under the hydrostatic pressure.

The hydrostatic pressure, acting on the triangle sides, results into the forces F,, F, and F:
F. =P S=Pn)-a-l

b
Fy :jp(y) (- dy
0
C
FC :J.p(y) KdZ
0
where:
Py is the hydrostatic pressure in the depth h,
S is the area, on which the pressure acts,
4 is the length of the body (not seen on Fig. 3.),

P is the hydrostatic pressure in the depth y.

The coordinate z and its differential dz are:

Z= _y and dZ=(_j—y
sinf3 sinf3
Subsequently the pressure forces are:
b
F,=[p-g-(h+y)-r-dy=p-g-£-(h+4-b)-b
0
" 1 1
EF = g-(h+v) /- —dv=p-q-/-——-(h+L.-b)-b=p-g-¢-(h+L.b)-c
clpg( y) sing Y =P SirIB( t-b)-b=p-g-/-(h+1-b)

For horizontal direction x:
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>F, =F, —F sinp=p-g-£-(h+3-b)-b—p-g-¢-——-(h+%-b)-b-sinp=0
For vertical direction y:

>'F,=F, -cosp-F, =p-g-¢- L (h+1-b)-b-cosp—p-g-h-a-¢=

sinf
h+1-b

=p-0-0- 2 _.pb-h-al=0-g-2-a-lh+%-b=h)=%.p-0-¢-a-b
p-g (tanﬁ jpg (h+3-b-h)=4-p-g

(taking into account that ﬂ =tanp = E )

cosf3 a

The result corresponds to the Archimedes law for the lifting force:
L:V.p.g

where
V:%.g.ab

is the volume of the underwater body.

Farther the point of application of the pressure forces F,, F, and F. is necessary to determine.
The pressure pg, along the side a is constant, then the point of application of the force F, is in
the centre of the side a, in the distance a/2 from the left corner of the triangle.

The pressure p, along the sides b and c increases linearly, then the arm d of the force F, or e
of the force F, resp. are:

b b
0

0

If
F—p-g-t-(he1 )b

then
d:b_3‘h+2~b

6-h+3-b

Farther

( 'y dy 1 2 3
F.e=[zp, ¢-dz=p-g-¢[(h+ W gt (thb21lb
¢ -([ Pw) 9 I ) sinB sin P9 sin2[3(2 s )

if
F=p.g-l——.(h+3-b)-b

sinp 2
then

b 3-h+2-b 3-h+2-b

C.
smB 6-h+3-b 6-h+3-b
It is clear that

e-sinp=d
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and so the point of application of both F, and F. forces is in the depth of (h+d) under the
water level.

Finally the arm p of the resulting lifting force L is:
L-p=F -cosB-(a—e-cospB)—F,-1-a

(Notice: As shown above, the points of application of the forces F, and F, are in the same
depth, the force Fy, and horizontal component of the force F. lies on the same line, their moment is
zero and they are not taken into account in the last formula.)

The arm p of the lifting force L is then:

1
~~ (h+i.p)b-(a-e- _1.n.a2
:FC'COSB'(a‘e'COSB)—Fa-%-a:tanB (h+1-b)-b-(a—e-cosp)-1-h-a )

F.-cosp-F, 1 (h+1-b)b-h-a
tan3
1) (g 3h+2-b)
:(h+§~b)~(a—e~cosﬁ)—§-h'a:a'(h+2 b) (1 6-h+3-b) ? "
h+%-b—h ib
farther:
6-h+3-b-3-h-2-b 3-h+b
2.h+b)- —h 2-h+b)————~—h
_ ,( +b) 6-h+3-b _ .( )3'(2~h+b)
P=a b -@ b
and finally:
p=5-a

Identically the centre of gravity of triangular body is in 1/3 of the side a. The analogical solu-
tion for rectangle is trivial and will not be performed. Any more complicated shape can be assembled
from triangles and rectangles (see Fig. 4). As a result it can be specified that the point of application
of the lifting force is in the centre of gravity of the draught volume.

Pl | NG
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—

Fig. 4. The body assembled from triangles and rectangles.

3 THE REED’S DIAGRAM
As shown in the previous chapter, in the inclined position the gravitational and lifting force lie
on the different carrying line. The perpendicular distance between them is called “the arm of stabil-
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ity” - p on Fig. 5. The moment L-p can have stabilizing or destabilizing effect, depending on the
position of one force with respect to another. The p-¢ curve, the dependence of the arm of stability p
on the inclination angle ¢, is called “the Reed’s diagram” (see Fig. 5).

water level

Glim ¢~

Fig. 5. The inclined vessel and the Reed’s diagram.

Through inclining the arm of stability increases - the vessel tends to return to the equilibrium
position. Then the arm of stability decreases and finally, in the limit position, reaches zero. Any big-
ger inclining leads to the loss of stability and uncontrolled turnover. The important parameter is the

limit angle ¢;im, determining the point of the lost of stability.

4 THE STABILITY OF THE STRUCTURE

The supporting structure of the conveyor belt consists of two pontoons assembled into one
structure (see Fig. 6).
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Fig. 6. The conveyor belt supporting structure.

The position of the centre of gravity G, given by the height hg above bottom, is constant
through inclining. But the position of the lifting force point of application changes. The arm of stabil-
ity (see Fig. 7) is then:

p=X_-Cos¢+Yy, -sing—hg-sing

where:

XL is the x coordinate of the lifting force point of application,

7 is the y coordinate of the lifting force point of application,

hg is the y coordinate of the center of gravity (due to symmetry the x coordinate is zero),
[0 is the inclining angle.
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Fig. 7. The arm of stability.

In the following text the position of the lifting force point of application, expressed by the x,
and y,_ coordinates, will be emphasized.
The equilibrium of gravitational and lifting force appears when the draught volume is:

m
V=—
P
where:
m is the mass of the whole structure,
p is the water density.
This volume is calculated and is constant throughout all the inclining.
If the shape of pontoon is the simple block, then the draught area (see Fig. 8) is:
V
A=—

l
where 7 is the length of the block. This area is calculated and is constant throughout all the inclining.

Rvd the water level

Fig. 8. The draught area.

4.1 The stability in lateral plane
The process of inclining of the pontoon can be divided into 3 phases:

1. phase (see Fig. 9) begins in horizontal position of the pontoon board, ends when the water
level goes through the top corner of pontoon.
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(The sketch on Fig. 9 is rotated by the angle ¢ so that the pontoon board is horizontal and the
water level is sloped.)

i the water level
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Fig. 9. The inclining, 1.phase.

Here a s the pontoon width,
he is the pontoon height.

2. phase (see Fig. 10) begins when the water level goes through the top corner of pontoon and
end when it goes through the bottom corner.

[
@ the Watfr Ieveil ¢:E

Fig. 10. The inclining, 2.phase.

3. phase (see Fig. 11) begins when the water level goes through the bottom corner and ends by
the loss of stability.
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Fig. 11. The inclining, 3. phase.

The mathematical solution has two steps.

1. The solution of the vertical position of the pontoon in water (the vertical height hs in Fig. 9,
10 and 11) so that the lifting force is equal to the gravitational force.

2. The solution of the x, and y, coordinates of the lifting force point of application.

For example for the 2. phase is:
hy=h,—/(h,-a-A)-2-tanp+1-a-tan¢
(t-a-tang+h,—h,)-(a-tang—h_+h,)

6-A-tan® ¢
3-h-a-tangp—(h,—h +1-a-tang)’-(2-h,+h,—1-a-tan¢)
6-A-tand

The total solution is complicated and will not be presented here. Finally the Reed’s diagram is
constructed for given dimension and masses (see Fig. 12).
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Fig. 12. The Reed’s diagram for lateral stability.
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It can be seen that up to the angle approx. ¢ = 13° the arm of stability linearly increases. In the
position ¢ = 17° the arm is maximal. Then it decreases. Finally in the position ¢;iy = 33° the arm is
zero. After other inclining the uncontrolled turnover follows.

4.2 The stability in longitudinal plane
The sketch is on Fig. 13.
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Fig. 13. The two pontoons.

Here a, b and h, are the dimensions of the pontoons. The same as in case of lateral stability,
the draught volume V and the draught area A must be granted.

The process of inclining has 4 (or may be 5) phases (see Fig. 14).

The solution has the two steps again - solution of the height hs and solution of coordinates x,
and y, . But the full solution is very complicated and will not be presented here. The Reed’s diagram
is on Fig. 15, the maximum inclining angle is ¢max = 44°.
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Fig. 14. The four phases of inclination.

248




600 -

[mm] 400 4—

200 4
] ] ] ¢ [0] ]

10°  20°  30°  40°

Fig. 15. The Reed’s diagram for longitudinal stability.
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5 THE NUMERICAL SOLUTION

The pontoons sometimes have the different shape (see Fig. 16), for example the shape of the
half cylinder.

! the water level \V4

Fig. 16. The half-cylinder pontoons.

The algebraic solution is then very complicated, almost impossible. In this case the computer
modeling was performed.

In the program Ansys (or any CAD software) is very easy to build the 2D or 3D model of the
pontoons (see Fig. 17). It can be divided by a line, representing the water level. The draught area of
the underwater part and its centroid coordinates are then calculated by software.
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Fig. 17. The 2D model and its cut by the water level.
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The solution contains 2 cycles. In the first cycle the angle ¢ (the vessel inclination) increases
with a certain step. Every loop then contains the second cycle, in witch the position of the water level,
determined by the height hg, changes so that the draught area has just the value, needed to obtain the
equilibrium between the gravitational and lifting force.

The example of the result listing is:
TOTAL SURFACE AREA OF ALL SELECTED AREAS = 0.61892E+06
CENTER OF MASS: XC=144.32 YC=272.88 ZC= 0.0000

For more complicated shape the 3D modeling is performed (see Fig. 18).

the water level

the water/lt%\/}l/

) kT

Fig. 18. The 3D model and its cut by the water level.
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The example of the result listing is:
TOTAL VOLUME = 18.570
CENTER OF MASS: XC=1.3508 YC= 0.44782 ZC= 0.0000

6 CONCLUSION

The solution of the pontoon stability is a very important problem in the process of cross-water
transport. For the rectangular pontoon shape it can be solved analytically. The advantage is that such
solution can be algorithmized and changed into program, for example in the MS Excel environment.
For the more complicated pontoon shape the numerical solution can be performed and the data calcu-
lated by a certain software.
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In both cases the result is the Reed’s diagram and most important the maximum inclining an-
gle dmax, determining the break point - the point of the stability lost.
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