article No. 1851

Jaroslav KOZACZKA*, Pavel KOLAT**

EXERGY IN CHEMICAL REACTIONS OF COMBUSTION AND GASIFICATION PART 2: SOME NUMERICAL EXAMPLES EXERGIE V CHEMICKÝCH REAKCÍCH SPALOVÁNÍ A ZPLYŇOVÁNÍ ČÁST 2: NĚKOLIK NUMERICKÝCH PŘÍKLADŮ

Abstract

The exergy concept applied to chemical reactions of combustion and gasification has been presented and discussed in detail. All the essential cases will be taken into account, namely the equimolar and non–equimolar — homogeneous and heterogeneous — stoichiometric processes, but also the non–stoichiometric ones. The numerical examples show the expected correctness of the theoretical approach which means, the method can be applied to the complex system analysis containing combustion and gasification processes. The analysis makes it clear that the method can be also used for all the chemical conversion processes in the chemical and process engineering.

Abstrakt

Exergetická koncepce byla aplikována na chemické reakce spalování a zplyňování a byla předložena a projednána detailně. Všechny základní případy budou brány v úvahu, a sice equimolární a ne-equimolární , homogenní a heterogenní stechiometrické procesy, ale také i ne-stechiometrické procesy. Numerické příklady ukazují na očekávanou správnost teoretického přístupu, což znamená, že metodu lze použít na komplexní systémové analýzy, které obsahují spalovací a zplyňovací procesy. Z analýz je zřejmé, že metoda může být také použita pro všechny chemické konverzní procesy v chemickém a procesním inženýrství.

1 INTRODUCTION

The problem of exergy rating of chemical reactions can be presented in a form of numerical examples of some special cases of combustion and gasification processes. It should be made an essential partition into two groups: the =type and the \rightarrow type chemical reactions. The first group are the so-called equilibrium chemical reactions, in which all the reactants are represented in a resulting reactive mixture. They are mostly the gasification ones (but even explosive combustion processes can be described using chemical equilibrium principles). The second group, however, are reactions that occur very fast and practically the equilibrium lies at the side of the reaction products. They are presented usually in the elder thermodynamics text-books as a combustion calculation problem. The simplification is in fact justified.

For the following numerical examples, which can be used as tests for the further computation procedures, the equation derived in [01] is essential. With its help, the concentration exergy change inversion point of a specie (or reactant) r can be determined, the point K [01], i.e. the appropriate chemical reaction advancement does result from the solution of the non-linear equation

^{*} prof. Ing., Dr. Jaroslav KOZACZKA, (Prof. dr hab. inż), AGH – University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Engineering and Environmental Protection, Mickiewicza 30, 30–059 Kraków, Poland – corresponding author (kozaczka@agh.edu.pl)

^{**} prof. Ing. Pavel KOLAT, DrSc., VŠB – Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Power Engineering, 17 listopadu 15, 708 33 Ostrava–Poruba, Czech Republic

$$\nu_{\rm r} \cdot \ln \left(\frac{1}{x_{\rm r,0}} \cdot \frac{n_{\rm r,1} + \xi_{\rm r,extr} \nu_{\rm r}}{n_{\rm l} + \xi_{\rm r,extr} \sum_{\rm r} \nu_{\rm r}} \right) + \nu_{\rm r} - \frac{n_{\rm r,1} + \xi_{\rm r,extr} \nu_{\rm r}}{n_{\rm l} + \xi_{\rm r,extr} \sum_{\rm r} \nu_{\rm r}} \cdot \sum_{\rm r} \nu_{\rm r} = 0$$
(01)

The thermodynamic analysis of the non-stoichiometric chemical reaction will be presented in the last Chapter.

2 EQUIMOLAR CHEMICAL REACTIONS OF COMBUSTION

2.1 C-Combustion in Pure Oxygen

The heterogeneous (reactants in solid and gaseous state) stoichiometric chemical reaction $C + O_2 \rightarrow CO_2$

will be analyzed. This reaction is equimolar in the gaseous phase, which significantly simplifies calculations.

The real molar fraction of the element carbon C (as a coal substitute) changes from 0.5 to 0, of the oxygen O₂ from 0.5 to 0 and of the carbon dioxide CO₂ from 0 to 1. Appropriate molar fractions $x_{j,extr}$ equal to:

– oxygen	O_2	$x_{O2,0} = 0.2095$	$x_{O2,extr} = 0.0771$
 carbon dioxide 	CO_2	$x_{CO2,0} = 0.0003$	$x_{CO2 \text{ extr}} = 0.0001$

which means, that both, O_2 and CO_2 , can invert the concentration exergy change in a process. In the gaseous phase the molar fractions of the analyzed reactive mixture change as follows:

$x_{O2,1} = 1$	\rightarrow	$x_{O2,extr} = 0.0771$	\rightarrow	$x_{02,2} = 0$
$x_{\rm CO2,1} = 0$	\rightarrow	$x_{\rm CO2,extr} = 0.0001$	\rightarrow	$x_{CO2,2} = 1$

First, the total amounts of a reactive mixture in a gaseous phase should be determined, for which the values of $x_{j,extr}$ are reached (for there are calculated only chemical concentration exergy changes in this phase).

- <u>carbon (graphite) C — condensed phase (solid state):</u>

The element coal occurs only in the condensed phase and in the reactive mixture its presence diminishes to zero, the zero exergy change will be taken into account, namely (-2)

$$\nabla (n \bar{e}_{\mu,C}^{0}) = (0-1) \cdot 409.9462 = -409.9462 \text{ kJ}$$

- $oxygen O_2$ and carbon dioxide CO_2 — gaseous phase:

The amount of oxygen in the reactive mixture changes in the following way

 $n_{\rm O2} = n_{\rm O2,1} + v_{\rm O2}\xi = 1 - \xi$

and of the carbon dioxide

 $n_{\rm CO2} = n_{\rm CO2,1} + v_{\rm CO2} \xi = \xi$

because

$$n_{02,1} = 1 \mod n_{C02,1} = 0$$
 $v_{02} = -1$ and $v_{C02} = 1$

The amount of the element carbon changes just like the amount of oxygen, but it won't be taken into account by calculations of the chemical concentration exergy changes. The total amount of the gaseous phase in a process is a sum of oxygen and carbon dioxide amounts, i.e.

$$n^{\text{gas}} = n_{02} + n_{\text{CO2}} = n_{02,1} + n_{\text{CO2},1} + v_{02}\xi + v_{\text{CO2}}\xi = 1 \text{ mol}$$

which means, during the whole process the total amount of the gaseous phase does not change at all (the zero volume contraction). However, the molar fractions of oxygen and of carbon dioxide will change, namely

$$x_{\text{O2}} = \frac{n_{\text{O2},1} + v_{\text{O2}}\xi}{n^{\text{gas}}} = \frac{1 - \xi}{1} = 1 - \xi \text{ and } x_{\text{CO2}} = \frac{n_{\text{CO2},1} + v_{\text{O2}}\xi}{n^{\text{gas}}} = \frac{\xi}{1} = \xi$$

The both extreme values of these molar fractions $x_{O2,extr}$ and $x_{CO2,extr}$ are achieved by the same total reactive mixture amount, i.e. by 1 mol. Because of

$$x_{\text{O2,1}} = 1 \longrightarrow x_{\text{O2,extr}} = 0.0771 \longrightarrow x_{\text{O2,2}} = 0$$

168

$$\begin{split} x_{\text{CO2,1}} &= 0 & \longrightarrow \quad x_{\text{CO2,extr}} = 0.0001 & \longrightarrow \quad x_{\text{CO2,2}} = 1 \\ \text{and } n^{\text{gas}} &= 1 \text{ mol there is either} \\ n_{\text{O2,1}} &= 1 \text{ mol } & \longrightarrow \quad n_{\text{O2,extr}} = x_{\text{O2,extr}} \cdot n^{\text{gas}} = 0.0771 \text{ mol} & \longrightarrow \quad n_{\text{O2,2}} = 0 \\ n_{\text{CO2,1}} &= 0 & \longrightarrow \quad n_{\text{CO2,extr}} = x_{\text{CO2,extr}} \cdot n^{\text{gas}} = 0.0001 \text{ mol} & \longrightarrow \quad n_{\text{CO2,2}} = 1 \text{ mol} \\ \text{Taking additionally into account, that} \\ n_1^{\text{gas}} &= n_2^{\text{gas}} = n^{\text{gas}} = 1 \text{ mol} \\ \text{one becomes:} \\ \nabla \left(n \bar{e}_{\mu}^x \right)_{\text{O2}}^c &= -\left(n_{02,\text{extr}} + n_1 x_{02,1} \ln \frac{x_{02,1}}{x_{02,0}} \right) \overline{R} T_0 = -\left(0.0771 + 1 \cdot 1 \cdot \ln \frac{1}{0.2095} \right) \overline{R} T_0 = -1.6401 \, \overline{R} T_0 \\ \text{and} \\ \Delta \left(n \bar{e}_{\mu}^x \right)_{\text{O2}}^c &= \left(n_{2} x_{02,2} \ln \frac{x_{02,2}}{x_{02,0}} + n_{02,\text{extr}} \right) \overline{R} T_0 = (0 + 0.0771) \overline{R} T_0 = 0.0771 \, \overline{R} T_0 \\ \text{or} \\ \nabla \left(n \bar{e}_{\mu}^x \right)_{\text{CO2}}^c &= \left(n_{2} x_{02,2} \ln \frac{x_{02,2}}{x_{02,0}} + n_{02,\text{extr}} \right) \overline{R} T_0 = -\left(0.0001 + 0 \right) \overline{R} T_0 = -0.0001 \, \overline{R} T_0 \\ \text{and} \\ \Delta \left(n \bar{e}_{\mu}^x \right)_{\text{CO2}}^c &= \left(n_{2} x_{\text{CO2,2}} \ln \frac{x_{\text{CO2,extr}}}{x_{\text{CO2,0}}} \right) \overline{R} T_0 = \left(1 \cdot 1 \cdot \ln \frac{1}{0.0003} + 0.0001 \right) \overline{R} T_0 = 8.1118 \, \overline{R} T_0 \\ \text{Assuming } T_0 = 283.15 \, \text{K} \text{ and } \overline{R} = 0.0083143 \, \frac{\text{kJ}}{\text{mol K}} \text{ it will be } \overline{R} T_0 = 2.3542 \, \frac{\text{kJ}}{\text{mol}}, \text{ and hence} \\ \nabla \left(n \bar{e}_{\mu}^x \right)_{\text{CO2}}^c &= -1.6401 \, \overline{R} T_0 = -3.8611 \, \text{kJ} \, \Delta \left(n \bar{e}_{\mu}^x \right)_{\text{CO2}}^c = 8.1118 \, \overline{R} T_0 = 19.0968 \, \text{kJ} \\ \nabla \left(n \bar{e}_{\mu}^x \right)_{\text{CO2}}^c &= -0.0001 \, \overline{R} T_0 = -0.0003 \, \text{kJ} \, \Delta \left(n \bar{e}_{\mu}^x \right)_{\text{CO2}}^c = 8.1118 \, \overline{R} T_0 = 19.0968 \, \text{kJ} \\ \end{bmatrix}$$

In the case of zero exergy change the total amount of disappearing oxygen and created carbon dioxide should be taken into account. The appropriate values will be to $\nabla(n\bar{e}^0) = (0-1)\cdot 3\,6798 = -3\,6798 \,\text{kI} \qquad \text{and} \qquad \Lambda(n\bar{e}^0) = -(1-0)\cdot 10\,0074 \,\text{kI}$

$$\nabla (n\bar{e}_{\mu}^{0})_{02} = (0-1) \cdot 3.6798 = -3.6798 \text{ kJ} \qquad \text{and} \qquad \Delta (n\bar{e}_{\mu}^{0})_{02} = (1-0) \cdot 19.0974 = 19.0974 \text{ kJ}$$

The reaction heat is up to the process temperature. In the following table there is given additionally the reaction heat exergy for $T_0=283.15$ K (the mixing heat is negligible).

<i>T</i> [K]	$Q_{ m rea}^{ m ->}[m kJ]$	$E_{ m Q,rea}^{ m ->}[m kJ]$
	•	
298.15	-393.70	-19.8071
300	-393.71	-22.1131
400	-394.21	-115.1580
500	-394.84	-171.2440
600	-395.45	-208.8282
700	-395.96	-235.7964
800	-396.39	-256.0946
900	-396.74	-271.9236
1000	-397.03	-284.6123
1100	-397.27	-295.0130
1200	-397.49	-303.6991
1300	-397.69	-311.0706
1400	-397.89	-317.4144
1500	-398.09	-322.9412

For the exothermic reaction ($Q_{rea}^{->} < 0$) the following temperature range is valid: 298–1500 K (because for C: 298–2300 K, for O₂: 298–1500 K, and for CO₂: 273–1860 K). The coefficients of the reaction heat temperature dependence

$$\Delta i_{298} = -393700$$

 $\Delta a = -31.09 \quad \Delta b = 0.05468 \qquad \Delta c' = 1310000 \qquad \Delta c = -0.000035$
 $\Delta d = 0.00000000747$

have been applied in calculations, [02].

The thermodynamic effectivity quotient can be calculated with the above determined concentration exergy changes. Generally

$$\varepsilon = \frac{\left|\Delta\left(n\bar{e}_{\mu}^{x}\right)_{02}^{<}\right| + \left|\Delta\left(n\bar{e}_{\mu}^{x}\right)_{CO2}^{>}\right| + \left|\Delta\left(n\bar{e}_{\mu}^{0}\right)_{CO2}\right| + \left|E_{Q,rea}^{->}\right|}{\left|\nabla\left(n\bar{e}_{\mu}^{x}\right)_{02}^{>}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{x}\right)_{CO2}^{<}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{C}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{02}\right|}\right|}$$

or
$$\varepsilon = \frac{0.1814 + 19.0968 + 19.0974 + \left|E_{Q,rea}^{->}\right|}{3.8611 + 0.0003 + 3.6798 + 409.9462} = \frac{38.3757 + \left|E_{Q,rea}^{->}\right|}{417.4875}$$

Putting the chemical reaction heat exergy aside, the numerical value of the process thermodynamic effectivity is very low. The problem here is very similar to the problem described in an Example 4.2, [03], pp. 216–220, where the air and the carbon dioxide were compressed. In the first case the working agent losses to the surroundings due to leakages caused an increase of the process thermodynamic effectivity, and in the second case its decrease. An oxidation of carbon, which is not present in the natural environment and has been produced from atmospheric CO₂, is very clearly wasting of the basic effect. Any advantage of this process can be only obtaining of the pure carbon dioxide (in the assumed natural environment its molar fraction is $x_{CO2,0}=0.0003$).

In the whole temperature range the analyzed chemical reaction was exothermic: the reaction heat exergy $E_{Q,rea}^{->}$ is carried away as energy advantages and should be added to the nominator of the process thermodynamic effectivity quotient.

process thermodyn	process e	exergy ef	ficiency	
<i>T</i> [K]	ε	<i>T</i> [K]	$\eta_{ m ex}$ '	$\eta_{ m ex}$
298.15	0.1394	298.15	0.0479	0.0946
300	0.1449	300	0.0535	0.0996
400	0.3678	400	0.2784	0.3246
500	0.5021	500	0.4140	0.4602
600	0.5921	600	0.5049	0.5510
700	0.6567	700	0.5701	0.6162
800	0.7053	800	0.6191	0.6653
900	0.7433	900	0.6574	0.7036
1000	0.7736	1000	0.6881	0.7343
1100	0.7986	1100	0.7132	0.7594
1200	0.8194	1200	0.7342	0.7804
1300	0.8370	1300	0.7521	0.7982
1400	0.8522	1400	0.7674	0.8136
1500	0.8655	1500	0.7808	0.8269

The exergy process efficiency quotient can be chosen from many possible arrangements, e.g.

$$\eta_{\rm ex} = \frac{\left|\Delta \left(n\bar{e}_{\mu}^{0}\right)_{\rm CO2}\right| + \left|E_{\rm Q,reac}^{->}\right|}{\left|\nabla \left(n\bar{e}_{\mu}^{0}\right)_{\rm C}\right| + \left|\nabla \left(n\bar{e}_{\mu}^{0}\right)_{\rm O2}\right|} = \frac{19.0974 + \left|E_{\rm Q,rea}^{->}\right|}{3.6798 + 409.9462}$$

$$\eta_{\text{ex}}^{'} = \frac{\left|E_{\text{Q,rea}}^{->}\right|}{\left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\text{C}}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\text{C}}\right|} = \frac{\left|E_{\text{Q,rea}}^{->}\right|}{3.6798 + 409.9462}$$

2.2 CH₄–Combustion in Pure Oxygen

The stoichiometric gaseous phase equimolar chemical reaction

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

should be analyzed. The real molar fraction of methane changes from 1/3 to 0, of oxygen from 2/3 to 0, of carbon dioxide from 0 to 1/3 and of water steam from 0 to 2/3. Appropriate $x_{i,extr}$ values equal to

– methane	CH_4	$x_{CH4,0} = 1.0$ (,, apparent")	$x_{\rm CH4,extr} = 1/e = 0.3679$
– oxygen	O_2	$x_{O2,0} = 0.2095$	$x_{O2,extr} = 0.0771$
 – coal dioxide 	CO_2	$x_{\rm CO2,0} = 0.0003$	$x_{\rm CO2,extr} = 0.0001$
- water steam	H_2O	$x_{\rm H2O,0} = 1.0$ (,, apparent")	$x_{\rm H2O,extr} = 1/e = 0.3679$
which maone that	ownoon	O the combon diswide CO	and water steem II O can show

which means, that oxygen O2, the carbon dioxide CO2 and water steam H2O can show the inversion point of the concentration chemical exergy change in the process, i.e. $x_{O2,extr}=0.0771$, $x_{CO2,extr} = 0.0001$ and $x_{H2O,extr} = 1/e = 0.3679$. The molar fractions in a reactive mixture change in the following way:

$x_{\rm CH4,1} = 1/3$	\rightarrow	$x_{\rm CH4,2} = 0$		
$x_{\text{O2},1} = 2/3$	\rightarrow	$x_{O2,extr} = 0.0771$	\rightarrow	$x_{02,2} = 0$
$x_{\rm CO2,1} = 0$	\rightarrow	$x_{\rm CO2,extr} = 0.0001$	\rightarrow	$x_{\rm CO2,2} = 1/3$
$x_{\rm H2O,1} = 0$	\rightarrow	$x_{\rm H2O,extr} = 1/e = 0.3679$	\rightarrow	$x_{\rm H2O,2} = 2/3$
1 1 1 1 1	. •			

The analyzed chemical reaction is equimolar gaseous phase process, so in this phase its total amount is the same, namely $n_1 = n_2 = n = 3$ mol. For such a case calculations simplify significantly.

- methane CH₄

Its molar fraction does not excess the $x_{j,extr}$ point and the appropriate concentration chemical exergy change consists only of the arising one below the inversion point, i.e.

$$\Delta \left(n \overline{e}_{\mu}^{x} \right)_{\text{CH4}}^{\times} = n \left(x_{\text{CH4,2}} \ln \frac{x_{\text{CH4,2}}}{x_{\text{CH4,0}}} - x_{\text{CH4,1}} \ln \frac{x_{\text{CH4,1}}}{x_{\text{CH4,0}}} \right) \overline{R} T_{0} = 3 \left(0 - \frac{1}{3} \cdot \ln \frac{1}{3} \right) \overline{R} T_{0} = 1.0986 \ \overline{R} T_{0} = 2.5863 \ \text{kJ}$$

The whole methane amount in the reactive mixture diminishes, so $\nabla \left(n \bar{e}^{0}_{\mu} \right)_{CH4} = (0-1) \cdot 833.7776 = -833.7776 \text{ kJ}$

$$\nabla \left(n \overline{e}_{\mu}^{x} \right)_{02}^{>} = n \left(x_{02, \text{extr}} + x_{02, 1} \ln \frac{x_{02, 1}}{x_{02, 0}} \right) \overline{R} T_{0} = -3 \cdot \left(0.0771 + \frac{2}{3} \cdot \ln \frac{2}{3 \cdot 0.2095} \right) \overline{R} T_{0} = -2.5463 \, \overline{R} T_{0} = -5.9946 \, \text{kJ}$$

and

and

$$\Delta \left(n \bar{e}_{\mu}^{x} \right)_{02}^{<} = n \left(x_{02,2} \ln \frac{x_{02,2}}{x_{02,0}} + x_{02,extr} \right) \overline{R} T_{0} = 3 \cdot (0 + 0.0771) \overline{R} T_{0} = 0.2312 \ \overline{R} T_{0} = 0.5443 \text{ kJ}$$

The oxygen amount in the reactive mixture diminishes in the process, and $\nabla \left(n \bar{e}_{\mu}^{0} \right)_{\Omega 2} = (0 - 2) \cdot 3.6798 = -7.3597 \text{ kJ}$

$$\nabla \left(n \overline{e}_{\mu}^{x} \right)_{\text{CO2}}^{\epsilon} = -n \left(x_{\text{CO2,extr}} + x_{\text{CO2,1}} \ln \frac{x_{\text{CO2,1}}}{x_{\text{CO2,0}}} \right) \overline{R} T_{0} = -3 \cdot (0.0001 + 0) \overline{R} T_{0} = -0.0003 \ \overline{R} T_{0} = -0.0008 \ \text{kJ}$$

and

$$\Delta \left(n \overline{e}_{\mu}^{x} \right)_{CO2}^{>} = n \left(x_{CO2,2} \ln \frac{x_{CO2,2}}{x_{CO2,0}} + x_{CO2,extr} \right) \overline{R} T_{0} = 3 \cdot \left(\frac{1}{3} \cdot \ln \frac{1}{3 \cdot 0.0003} + 0.0001 \right) \overline{R} T_{0} = 7.0134 \ \overline{R} T_{0} = 16.5110 \ \text{kJ}$$

the carbon dioxide will be formed in the analyzed process, and the zero chemical exergy change will equal to

$$\Delta \left(n \overline{e}_{\mu}^{0} \right)_{CO2}^{c} = (1-0) \cdot 19.0974 = 19.0974 \text{ kJ}$$

$$- \underline{\text{water steam}}_{H_2O} H_2O$$

$$\nabla \left(n \overline{e}_{\mu}^{x} \right)_{H_2O}^{c} = -n \left(x_{H_{2O, extr}} + x_{H_{2O, 1}} \ln \frac{x_{H_{2O, 1}}}{x_{H_{2O, 0}}} \right) \overline{R} T_0 = -3 \cdot \left(\frac{1}{e} + 0 \right) \overline{R} T_0 = -1.1036 \overline{R} T_0 = -2.5982 \text{ kJ}$$
and

$$\Delta \left(n \overline{e}_{\mu}^{x} \right)_{\text{H2O}}^{\geq} = n \left(x_{\text{H2O},2} \ln \frac{x_{\text{H2O},2}}{x_{\text{H2O},0}} + x_{\text{H2O},\text{extr}} \right) \overline{R} T_{0} = 3 \cdot \left(\frac{2}{3} \cdot \ln \frac{2}{3} + \frac{1}{e} \right) \overline{R} T_{0} = 0.2927 \ \overline{R} T_{0} = 0.6891 \text{ kJ}$$

The water steam will be created in the amount of 2 moles, so the zero chemical exergy change will equal to

$$\Delta \left(n \bar{e}_{\mu}^{0} \right)_{\text{H2O}} = (2 - 0) \cdot 10.3865 = 20.7729 \text{ kJ}$$

_ heat effect of the reaction at various temperatures (the heat exergy for $T_0=283.15$ K) The mixing heat will be assumed equal to zero. The following numerical values of the reaction heat and its exergy for the temperatures between 298.15 K and 1500 K will be obtained:

<i>T</i> [K]	$Q_{\rm rea}^{\scriptscriptstyle ->}$ [kJ]	$E_{\rm Q,rea}^{\scriptscriptstyle ->}$ [kJ]		<i>T</i> [K]	$Q_{\rm rea}^{\scriptscriptstyle ->}$ [kJ]	$E_{\rm Q,rea}^{\scriptscriptstyle ->}$ [kJ]
298.15	-802.72	-40.3850	1	900	-804.29	-551.2485
300	-802.71	-45.8553		1000	-805.06	-577.1073
400	-802.41	-234.4049		1100	-805.93	-598.4738
500	-802.44	-348.0201		1200	-806.86	-616.4772
600	-802.68	-423.8833		1300	-807.84	-631.8879
700	-803.08	-478.2355		1400	-808.83	-645.2435
800	-803.62	-519.1897		1500	-809.78	-656.9245

The reaction heat values mean, the process is exothermic ($Q_{rea}^{->} < 0$), the temperature range: 298-1500 K (because there are - CH₄: 273-1500 K, O₂: 298-1500 K, H₂O: 273-1800 K, CO2: 273-1860 K) and the coefficients of the reaction heat (enthalpy, [02]): $\Delta i_{298} = -802720 \ \Delta a = -5.53$ $\Delta b = 0.01171$ $\Delta c' = 862000$

$$\Delta c = -0.00002658$$

$$\Delta d = 0.000000113$$

<u>thermodynamic effectivity quotient</u>
 With quantities determined above it will be

$$\varepsilon = \frac{\left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{CH4}^{<} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{O2}^{<} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{CO2}^{>} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{CO2}^{>} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{CO2}^{>} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{H2O}^{>} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{0} \right)_{CO2} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{0} \right)_{H2O} \right| + \left| E_{Q,rea}^{->} \right| \\ \left| \nabla \left(n \bar{e}_{\mu}^{x} \right)_{O2}^{>} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{x} \right)_{CO2}^{<} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{x} \right)_{H2O}^{<} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{0} \right)_{CH4} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{0} \right)_{O2} \right| \\ \text{or} \\ \varepsilon = \frac{2.5863 + 0.5443 + 16.5110 + 0.6891 + 19.0974 + 20.7729 + \left| E_{Q,rea}^{->} \right|}{5.9946 + 0.0008 + 2.5982 + 833.7776 + 7.3597} = \frac{60.2012 + \left| E_{Q,rea}^{->} \right|}{849.7308}$$

exergy efficiency

The appropriate exergy efficiency quotients can be formulated as $|A(\pi^{-0})| + |A(\pi^{-0})| + |E^{-2}| = 10.0074 + 20.7720 + |E^{-2}|$

$$\eta_{\rm ex} = \frac{\left|\Delta \left(n\bar{e}_{\mu}^{0}\right)_{\rm CO2}\right| + \left|\Delta \left(n\bar{e}_{\mu}^{0}\right)_{\rm H2O}\right| + \left|E_{\rm Q,rea}^{->}\right|}{\left|\nabla \left(n\bar{e}_{\mu}^{0}\right)_{\rm CH4}\right| + \left|\nabla \left(n\bar{e}_{\mu}^{0}\right)_{\rm O2}\right|} = \frac{19.0974 + 20.7729 + \left|E_{\rm Q,rea}^{->}\right|}{833.7776 + 7.3597}$$

For the combustion rating the quotient $|_{E^{->}}|$

$$\eta_{\rm ex}^{'} = \frac{\left|E_{\rm Q,rea}^{->}\right|}{\left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\rm CH4}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\rm O2}\right|} = \frac{\left|E_{\rm Q,rea}^{->}\right|}{833.7776 + 7.3597}$$

can be of interest.

Following numerical values for the three types of an exergy rating quotient could be calculated:

thermodynamic effectivity			exergy efficiency			
T [K]	ε		<i>T</i> [K]	$\eta_{ m ex}$	$\eta_{ m ex}'$	
298.15	0.1184		298.15	0.0954	0.0480	
300	0.1239		300	0.1010	0.0536	
400	0.3467		400	0.3261	0.2787	
500	0.4804		500	0.4611	0.4137	
600	0.5697		600	0.5513	0.5039	
700	0.6337		700	0.6160	0.5686	
800	0.6818		800	0.6646	0.6172	
900	0.7196		900	0.7028	0.6554	
1000	0.7500		1000	0.7335	0.6861	
1100	0.7752		1100	0.7589	0.7115	
1200	0.7963		1200	0.7803	0.7329	
1300	0.8145		1300	0.7986	0.7512	
1400	0.8302		1400	0.8145	0.7671	
1500	0.8439		1500	0.8284	0.7810	

3 NON-EQUIMOLAR CHEMICAL REACTION OF H₂-COMBUSTION 3.1 H₂-Combustion in Pure Oxygen

The stoichiometric non-equimolar gas phase chemical reaction

 $2 H_2 + O_2 \rightarrow 2 H_2O$

will be analyzed. The molar fraction of hydrogen H₂ changes from 2/3 to 0, of oxygen O₂ from 1/3 to 0 and of water H₂O (or water steam) from 0 to 1. Appropriate molar fractions $x_{i,extr}$ equal to:

_	hydrogen	H_2	$x_{\rm H2,0} = 1.0$ (,, apparent")	$x_{\rm H2,extr} = 1/e = 0.3679$
_	oxygen	O_2	$x_{O2,0} = 0.2095$	$x_{O2,extr} = 0.0771$
—	water steam	H_2O	$x_{\rm H2O,0} = 1.0$ (,, apparent")	$x_{\rm H2O,extr} = 1/e = 0.3679$

Start (input) amounts are

 $n_{1,H2} = 2 \text{ mol}$ $n_{1,O2} = 1 \text{ mol}$ $n_1 = 3 \text{ mol}$ $n_{1,H2O} = 0$ and at the end (output) $n_{2,H2} = 0$ $n_{2,O2} = 0$ $n_2 = 2 \mod n_{2,H2O} = 2 \liminf n_{2$

Determination of the inversion point *K*:

- <u>hydrogen</u> $(j \equiv H_2)$

$$v_{j} = -2$$
 $n_{j,1} = 2$ $n_{l} = 3$ $\sum_{j} v_{j} = -1$ $x_{j,0} = 1.0$ (,, apparent")
173

The appropriate equation will be then to

$$2 \cdot \ln \left(\frac{2 - 2\xi_{j,\text{extr}}}{3 - \xi_{j,\text{extr}}} \right) - 2 + \frac{2 - 2\xi_{j,\text{extr}}}{3 - \xi_{j,\text{extr}}} = 0$$

Its numerical solution gives $\xi_{\text{H2,extr}} = 0.3960$ and with appropriate it becomes

$$n_{\text{extr},(\text{H2})} = 2.6040 \text{ mol}$$
 and $x_{\text{H2, extr}} = 0.4639$

$$- \underbrace{\text{oxygen}}_{v_j} (j \equiv O_2)$$

$$v_j = -1 \qquad n_{j,1} = 1 \qquad n_1 = 3 \qquad \sum_j v_j = -1 \qquad x_{j,0} = 0.2095$$

Eq. (01) will be to

$$-\ln\left(\frac{1}{0.2095} \cdot \frac{1-\xi_{j,extr}}{3-\xi_{j,extr}}\right) - 1 + \frac{1-\xi_{j,extr}}{3-\xi_{j,extr}} = 0$$

and its numerical solution gives $\xi_{O2,extr} = 0.8170$ and

$$n_{\text{extr},(O2)} = 2.1829 \text{ mol}$$
 and $x_{O2,\text{extr}} = 0.0838$

 $- \frac{\text{water steam}}{v_j = 2} (j \equiv H_2 \text{O})$ $v_j = 2 \quad n_{j,1} = 0 \qquad n_1 = 3$

$$\sum_{j} v_{j} = -1$$
 $x_{j,0} = 1.0$ (,, apparent")

")

Eq. (01) is to

$$2 \cdot \ln\left(\frac{2\xi_{j,extr}}{3-\xi_{j,extr}}\right) + 2 + \frac{2\xi_{j,extr}}{3-\xi_{j,extr}} = 0$$

and the numerical solution $\xi_{\text{H2O, extr}} = 0.4075$. Hence

$$n_{\text{extr.(H2O)}} = 2.5925 \text{ mol}$$
 and $x_{\text{H2O, extr}} = 0.3144$

Appropriate molar fractions change also in the following way:

$x_{\rm H2,1} = 1/3 = 0.3333$	\rightarrow	$x_{\rm H2,2} = 0$	(i.e. below	the $x_{\rm H2,extr}$ value)
$x_{\rm O2,1} = 1/3 = 0.3333$	\rightarrow	$x_{O2,extr} = 0.0838$	$3 \rightarrow$	$x_{02,2} = 0$
$x_{\rm H2O,1} = 0$	\rightarrow	$x_{\rm H2O, extr} = 0.314$	$4 \rightarrow$	$x_{\rm H2O,2} = 1$

After calculating the hydrogen concentration chemical exergy change (no inversion point), the total amounts of the reactive mixture should be determined, by which molar fractions $x_{j,extr}$ for oxygen and water steam are reached.

Assuming $T_0 = 283.15$ K and $\overline{R} = 0.0083143 \frac{\text{kJ}}{\text{mol K}}$ there will be $\overline{R}T_0 = 2.3542 \frac{\text{kJ}}{\text{mol}}$ and following concentration chemical exergy changes will be obtained:

- <u>hydrogen</u> H₂

Total exergy change results from the total molar fraction change between the states 1 and 2, are

$$\Delta \left(n \overline{e}_{\mu}^{x} \right)_{\text{H2}}^{\leq} = \left(n_{2} x_{\text{H2,2}} \ln \frac{x_{\text{H2,2}}}{x_{\text{H2,0}}} - n_{1} x_{\text{H2,1}} \ln \frac{x_{\text{H2,1}}}{x_{\text{H2,0}}} \right) \overline{R} T_{0} = \left(0 - 3 \cdot \frac{2}{3} \cdot \ln \frac{2}{3} \right) \overline{R} T_{0} = 0.8109 \ \overline{R} T_{0}$$

because of
 $n_{1} = 3 \text{ mol} \quad n_{2} = 2 \text{ mol} \quad x_{\text{H2,1}} = 2/3 \quad x_{\text{H2,2}} = 0 \quad x_{\text{H2,0}} = 1.0 \quad (\text{,, apparent fraction})$

it will be equal to

 $\Delta (n\bar{e}_{\mu}^{x})_{H2}^{<} = 0.8109 \ \bar{R}T_{0} = 1.9091 \ \text{kJ}$

The zero chemical exergy of hydrogen will change, $\nabla (n \bar{e}^0_{\mu})_{H2} = (0-2) \cdot 237.9219 = -475.8438 \text{ kJ}$

and will be added to the process expenditures (nominator of the rating quotient).

oxygen O2

The total reactive mixture amount while reaching the algebraic sign inversion point K of the concentration chemical exergy change for oxygen equals

 $n_{\text{extr,(O2)}} = 2.1829 \text{ mol}$

and its molar fraction at this process point

$$x_{02, extr} = 0.0838$$

Thus, the exergy change above the inversion point (superscript >) is

$$\nabla \left(n \overline{e}_{\mu}^{x} \right)_{02}^{>} = \left(n_{\text{extr}_{02}} x_{02,\text{extr}} \ln \frac{x_{02,\text{extr}}}{x_{02,0}} - n_{1} x_{02,1} \ln \frac{x_{02,1}}{x_{02,0}} \right) \overline{R} T_{0} = \\ = \left(2.1829 \cdot 0.0838 \cdot \ln \frac{0.0838}{0.2095} - 3 \cdot \frac{1}{3} \cdot \ln \frac{1}{3 \cdot 0.2095} \right) \overline{R} T_{0} = -0.6320 \ \overline{R} T_{0} = -1.4879 \text{ kJ}$$

and below it (superscript <)

$$\Delta \left(n \overline{e}_{\mu}^{x} \right)_{02}^{<} = \left(n_{2} x_{02,2} \ln \frac{x_{02,2}}{x_{02,0}} - n_{\text{extr},(02)} x_{02,\text{extr}} \ln \frac{x_{02,\text{extr}}}{x_{02,0}} \right) \overline{R} T_{0} = \\ = \left(0 - 2.1829 \cdot 0.0838 \cdot \ln \frac{0.0838}{0.2095} \right) \overline{R} T_{0} = 0.1676 \ \overline{R} T_{0} = 0.3946 \ \text{kJ}$$

The zero chemical exergy changes in the process in the following way:

$$\nabla (n \bar{e}^0_{\mu})_{\Omega 2} = (0 - 1) \cdot 3.6798 = -3.6798 \text{ kJ}$$

and will be added to the expenditures (nominator of the thermodynamic effectivity quotient).

<u>water steam</u> H₂O

The procedure the same as in the case of oxygen, because in the analyzed process the inversion point K will be crossed, and

$$n_{\text{extr},(\text{H2O})} = 2.5925 \text{ mol}$$
 and $x_{\text{H2O},\text{extr}} = 0.3144$

An appropriate substitution gives further

$$\nabla \left(n \overline{e}_{\mu}^{x} \right)_{\text{H2O}}^{<} = \left(n_{\text{extr},(\text{H2O})} x_{\text{H2O},\text{extr}} \ln \frac{x_{\text{H2O},\text{extr}}}{x_{\text{H2O},0}} - n_{1} x_{\text{H2O},1} \ln \frac{x_{\text{H2O},1}}{x_{\text{H2O},0}} \right) \overline{R} T_{0} = \\ = \left(2.5925 \cdot 0.3144 \cdot \ln \frac{0.3144}{1} - 0 \right) \overline{R} T_{0} = -0.9431 \, \overline{R} T_{0} = -2.2203 \, \text{kJ} \\ \Delta \left(n \overline{e}_{\mu}^{x} \right)_{\text{H2O}}^{>} = \left(n_{2} x_{\text{H2O},2} \ln \frac{x_{\text{H2O},2}}{x_{\text{H2O},0}} - n_{\text{extr},(\text{H2O})} x_{\text{H2O},\text{extr}} \ln \frac{x_{\text{H2O},\text{extr}}}{x_{\text{H2O},0}} \right) \overline{R} T_{0} = \\ = \left(0 - 2.5925 \cdot 0.3144 \cdot \ln \frac{0.3144}{1} \right) \overline{R} T_{0} = 0.9431 \, \overline{R} T_{0} = 2.2203 \, \text{kJ} \right)$$

Very interesting case has been occurred here: the total concentration chemical exergy change was equal to zero. It consists of two equal parts — the created and disappearing exergy, because the compositional chemical exergy change occurs between the molar fraction 0 and 1, and the natural environment concentration of water steam has been assumed equal 1, as produced in a devaluation chemical reaction.

The zero chemical exergy of water steam change is

$$\Delta \left(n \bar{e}_{\mu}^{0} \right)_{\text{H2O}} = (2 - 0) \cdot 10.3865 = 20.7729 \text{ kJ}$$

- absolute volume work of the chemical reaction

Assuming, the analyzed oxidation reaction occurs isobar at the natural environment pressure p_0 , the exergise of the absolute volume work equal to zero. In the case of higher pressures $p > p_0$ (like in the special combustion and/or gasifying technologies), it should be taken into account additionally

$$E_{\rm L,rea}^{+>} = \left(1 - \frac{p_0}{p}\right) L_{\rm rea}^{>} = -\left(p - p_0\right) \left(V_{\rm rea,2} - V_{\rm rea,1}\right) \text{ if greater than zero (>0)}$$

or
$$E_{\rm L,rea}^{->} = \left(1 - \frac{p_0}{p}\right) L_{\rm rea}^{>} = -\left(p - p_0\right) \left(V_{\rm rea,2} - V_{\rm rea,1}\right) \text{ if less than zero (<0)}$$

Taking the perfect gas relations it becomes

$$V_{\text{rea},2} - V_{\text{rea},1} = (n_2 - n_1)\frac{RT}{p} = -1 \cdot \frac{RT}{p}$$

whereby T and p are given (isobar–isotherm chemical reaction) and $n_2 - n_1 = -1$.

- <u>heat of the chemical reaction for various *T* and its exergy (at $T_0=283.15$ K) Assuming the heat effect of mixing equal to zero, there is:</u>

<i>T</i> [K]	$Q_{\rm rea}^{\scriptscriptstyle ->}$ [kJ]	$E_{\rm Q,rea}^{\scriptscriptstyle ->}$ [kJ]	<i>T</i> [K]	$Q_{\rm rea}^{\scriptscriptstyle ->}$ [kJ]	$E_{\rm Q,rea}^{ m ->}$ [kJ]
298.15	-483.9000	-24.3451	900	-496.2921	-340.1531
300	-483.9408	-27.1813	1000	-497.8717	-356.8993
400	-486.1968	-142.0302	1100	-499.2931	-370.7705
500	-488.4497	-211.8406	1200	-500.5624	-382.4505
600	-490.6163	-259.0863	1300	-501.6892	-392.4175
700	-492.6575	-293.3775	1400	-502.6872	-401.0187
800	-494.5528	-319.5120	1500	-503.5734	-408.5155

The analyzed chemical reaction is exothermic ($Q_{rea}^{->} < 0$), valid for the temperature range 298–1500 K (because for H₂: 273–1800 K, O₂: 298–1500 K, H₂O: 273–1800 K). Appropriate coefficients, [02], are:

$$\Delta i_{298} = -483900$$
 $\Delta a = -29.92$ $\Delta b = 0.00683$
 $\Delta c' = 431000$ $\Delta c = 0.0000131$ $\Delta d = -0.00000000544$

- thermodynamic effectivity

The thermodynamic process effectivity quotient will be generally

$$\varepsilon = \frac{\left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{H2}^{<} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{O2}^{<} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{H2O}^{>} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{0} \right)_{H2O} \right| + \left| E_{Q,rea}^{->} \right|}{\left| \nabla \left(n \bar{e}_{\mu}^{x} \right)_{O2}^{<} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{x} \right)_{H2O}^{<} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{0} \right)_{H2O} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{0} \right)_{O2} \right|}$$

or
$$\varepsilon = \frac{1.9091 + 0.3946 + 2.2203 + 20.7729 + \left| E_{Q,rea}^{->} \right|}{1.4879 + 2.2203 + 3.6798 + 475.8438} = \frac{25.2697 + \left| E_{Q,rea}^{->} \right|}{483.2047}$$

In this case the obtained numerical values of the thermodynamic process effectivity quotient are very low, when only concentration chemical exergy changes are taken into account. They are even lower, than for the combustion of element coal (the previous Chapter). Hydrogen as a fuel is more valuable — its zero chemical exergy is higher, and it has been either produced in a devaluation

chemical reaction of liquid water from the natural environment. Putting appropriate values determined above, yields:

process tem- perature	thermodynamic process effectivity	exergy e	fficiency
<i>T</i> [K]	Е	$\eta_{ m ex}$	$\eta_{ m ex}$ '
298.15	0.1027	0.0941	0.0508
300	0.1086	0.1000	0.0567
400	0.3463	0.3395	0.2962
500	0.4907	0.4851	0.4418
600	0.5885	0.5836	0.5403
700	0.6595	0.6551	0.6118
800	0.7135	0.7096	0.6663
900	0.7563	0.7527	0.7094
1000	0.7909	0.7876	0.7443
1100	0.8196	0.8165	0.7732
1200	0.8438	0.8409	0.7976
1300	0.8644	0.8617	0.8183
1400	0.8822	0.8796	0.8363
1500	0.8977	0.8952	0.8519

- exergy efficiency

Just like in the previous Chapter the exergy efficiency quotient can be defined in the following way:

$$\eta_{\text{ex}} = \frac{\left|\Delta\left(n\bar{e}_{\mu}^{0}\right)_{\text{H2O}}\right| + \left|E_{\text{Q,rea}}^{->}\right|}{\left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\text{H2}}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\text{O2}}\right|} = \frac{20.7729 + \left|E_{\text{Q,rea}}^{->}\right|}{3.6798 + 475.8438}$$

or
$$\eta_{\text{ex}}^{'} = \frac{\left|E_{\text{Q,rea}}^{->}\right|}{\left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\text{H2}}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\text{O2}}\right|} = \frac{\left|E_{\text{Q,rea}}^{->}\right|}{3.6798 + 475.8438}$$

3.2 H₂-Combustion in Atmospheric Air

It will be presented in the following the stoichiometric combustion of hydrogen in an atmospheric air with the air excess number λ . The higher pressure of the process will be assumed ($p > p_0$). The chemical reaction can be written down as

$$H_{2} + \frac{\lambda}{2}O_{2} + \frac{\lambda}{2}\frac{x_{N2,0}}{x_{02,0}}N_{2} \rightarrow H_{2}O + \frac{\lambda-1}{2}O_{2} + \frac{\lambda}{2}\frac{x_{N2,0}}{x_{02,0}}N_{2}$$

where $x_{O2,0}$ and $x_{N2,0}$ are the molar concentrations of oxygen O₂ and nitrogen N₂ in the atmospheric air (their values are assumed to be 0.21 and 0.79, respectively). If the air excess number λ will be set to 5, then the above formula will be to

$$H_2 + 2,5O_2 + 2,5\frac{0.79}{0.21}N_2 \rightarrow H_2O + 2O_2 + 2,5\frac{0.79}{0.21}N_2$$

 ${\rm H}_2 + 2.5\,{\rm O}_2 + 9.4048\,{\rm N}_2 \ \ \rightarrow \ {\rm H}_2{\rm O} + 2\,{\rm O}_2 + \ 9.4048\,{\rm N}_2$

- The molar concentration of hydrogen changes from

$$x_{\text{H2},1} = \frac{1}{1 + 2.5 + 9.4048} = 0.0775$$
 to $x_{\text{H2},2} = 0$

and of the oxygen from

$$x_{02,1} = \frac{2.5}{1+2.5+9.4048} = 0.1937$$
 to $x_{02,2} = \frac{2}{1+2+9.4048} = 0.1612$

The values for the water steam are from

$$x_{\text{H2O},1} = 0$$
 to $x_{\text{H2O},2} = \frac{1}{1 + 2 + 9.4048} = 0.0806$

and for the nitrogen from

$$x_{\text{N2,1}} = \frac{9.4048}{1+2.5+9.4048} = 0.7288$$
 to $x_{\text{O2,2}} = \frac{9.4048}{1+2+9.4048} = 0.7582$

The total amount of the reactive mixture changes from $n_1 = 1 + 2.5 + 9.4048 = 12.9048$ mol to $n_2 = 1 + 2 + 9.4048 = 12.4048$ mol

which means that it will less. The start values are

$$n_{1,H2} = 1 \mod n_{1,O2} = 2.5 \mod n_{1,H2O} = 0$$
 $n_{1,N2} = 9.4048 \mod 10^{-1}$
and at the end of the process

 $n_{2,H2} = 0$ $n_{2,O2} = 2 \text{ mol}$ $n_{2,H2O} = 1 \text{ mol}$ $n_{2,N2} = 9.4048 \text{ mol}$

To determine the particular concentration exergy changes of reactants the prove should be made if the appropriate algebraic inversion point is crossed in the analyzed process, Eq. (01). For the hydrogen $(j \equiv H_2)$ there is for example

$$v_j = -1$$
 $n_{j,1} = 1$ $n_1 = 12.9048$ $\sum_j v_j = -1/2$ $x_{j,0} = 1,0$ (,, apparent ")

and with Eq. (01)

$$-\ln\left(\frac{1-\xi_{\text{extr}}}{12.9048-\frac{1}{2}\xi_{\text{extr}}}\right) - 1 + \frac{1}{2} \cdot \frac{1-\xi_{\text{extr}}}{12.9048-\frac{1}{2}\xi_{\text{extr}}} = 0$$

The numerical solution of the non–linear equation leads to the result –6.4929. Thus, the following values can be obtained: $n_{\text{extr},(\text{H2})} = 16,1548 \text{ mol}$ and $x_{\text{H2,extr}} = 0,4643$, which means that the expected values cannot be reached at all ($x_{\text{H2,1}}=0.0775$ and $x_{\text{H2,2}}=0$).

The same calculations will be done for oxygen $(n_{\text{extr},(O2)} = 12.6026 \text{ mol or } x_{O2,\text{extr}} = 0.0785)$, water steam $(n_{\text{extr},(H2O)} = 11.1517 \text{ mol or } x_{H2O,\text{extr}} = 0.3144)$ and nitrogen $(n_{\text{extr},(N2)} = 12.6026 \text{ mol or } x_{N2,\text{extr}} = 0.2952)$. It could be stated that the concentration changes did not lie in the range, in which the inversion point K lies. For the following values: $T_0 = 283.15$ K, $\overline{R} = 0.0083143 \frac{\text{kJ}}{\text{mol K}}$ and hence $\overline{R}T_0 = 2.3542 \frac{\text{kJ}}{\text{mol K}}$ the chemical concentration exergy changes have been determined, and first for the hydrogen H₂:

$$\left(E_{\mu,H2}^{x} \right)_{2} - \left(E_{\mu,H2}^{x} \right)_{1} = \left(n_{2} x_{H2,2} \ln \frac{x_{H2,2}}{x_{H2,0}} - n_{1} x_{H2,1} \ln \frac{x_{H2,1}}{x_{H2,0}} \right) \overline{R} T_{0} =$$

$$= \left(0 - 12.9040 \cdot 0.0775 \cdot \ln \frac{0.0775}{1} \right) \overline{R} T_{0} = 2.558 \ \overline{R} T_{0} = 6.0211 \ \text{kJ} = \Delta \left(n \overline{e}_{\mu}^{x} \right)_{H2}^{\kappa}$$

which can be added to the process advantages (it is greater than zero). The molar concentration of oxygen O₂ changes from $x_{02,1}=0.1937$ up to $x_{02,2}=0.1612$, and thus

$$\left(E_{\mu,02}^{x} \right)_{2}^{\flat} - \left(E_{\mu,02}^{x} \right)_{1}^{\flat} = \left(n_{2} x_{02,2} \ln \frac{x_{02,2}}{x_{02,0}} - n_{1} x_{02,1} \ln \frac{x_{02,1}}{x_{02,0}} \right) \overline{R} T_{0} = \\ = \left(12.4048 \cdot 0.1612 \cdot \ln \frac{0.1612}{0.21} - 12.9048 \cdot 0.1937 \cdot \ln \frac{0.1937}{0.21} \right) \overline{R} T_{0} = \\ = -0.3269 \overline{R} T_{0} = -0.7696 \text{ kJ} = \nabla \left(n \overline{e}_{\mu}^{x} \right)_{02}^{\flat}$$

It is written down with > index because the whole molar concentration change does occur above $x_{O2,extr}$ ($x_{O2,extr}$ =0.0785).

For the water steam and oxygen following numerical values have been obtained

$$\left(E_{\mu,\text{H2O}}^{0} \right)_{2}^{\varsigma} - \left(E_{\mu,\text{H2O}}^{0} \right)_{1}^{\varsigma} = \left(n_{2} x_{\text{H2O},2} \ln \frac{x_{\text{H2O},2}}{x_{\text{H2O},0}} - n_{1} x_{\text{H2O},1} \ln \frac{x_{\text{H2O},1}}{x_{\text{H2O},0}} \right) \overline{R} T_{0} = \\ = \left(12.4048 \cdot 0.0806 \cdot \ln \frac{0.0806}{1} - 0 \right) \overline{R} T_{0} = -2.5181 \overline{R} T_{0} = -5.9278 \text{ kJ} = \nabla \left(n \overline{e}_{\mu}^{x} \right)_{\text{H2O}}^{\varsigma} \right)$$

and

$$\left(E_{\mu,N2}^{x} \right)_{2} - \left(E_{\mu,N2}^{x} \right)_{1} = n_{N2} \overline{R} T_{0} \ln \frac{x_{N2,2}}{x_{N2,1}} = n_{1} x_{N2,1} \overline{R} T_{0} \ln \frac{x_{N2,2}}{x_{N2,1}} =$$

$$= 12.9048 \cdot 0.7288 \cdot \overline{R} T_{0} \ln \frac{0.7582}{0.7288} = 0.3716 \overline{R} T_{0} = 0.8749 \text{ kJ} = \Delta \left(n \overline{e}_{\mu}^{x} \right)_{N2}^{>}$$

Zero exergies of the reactants (except nitrogen) have been taken from the Table 1 in [06] for the natural environment temperature of T_0 =283.15 K. Thus,

$$\nabla \left(n \bar{e}_{\mu}^{0} \right)_{\text{H2}} = (0 - 1) \cdot 237.9219 = -237.9219 \text{ kJ}$$
$$\nabla \left(n \bar{e}_{\mu}^{0} \right)_{\text{O2}} = (2.0 - 2.5) \cdot 3.6798 = -1.8399 \text{ kJ}$$
$$\Delta \left(n \bar{e}_{\mu}^{0} \right)_{\text{H2O}} = (1 - 0) \cdot 10.3865 = 10.3865 \text{ kJ}$$

where two first values (negative) should be added to thermodynamic expenditures and the last one (positive) to thermodynamic advantages.

The reaction heats for the chosen temperature range up to 1500 K and appropriate exergies are:

<i>T</i> [K]	$Q_{\rm rea}^{\scriptscriptstyle ->}$ [kJ]	$E_{\rm Q,rea}^{\scriptscriptstyle ->}~[{\rm kJ}]$	7	[K]	$Q_{\rm rea}^{\scriptscriptstyle ->}$ [kJ]	$E_{\rm Q,rea}^{\scriptscriptstyle ->}$ [kJ]
298.15	-241.95	-12.1727	Γ	900	-248.23	-170.1365
300	-241.98	-13.5913		1000	-248.60	-178.2114
400	-243.44	-71.1163		1100	-248.72	-184.6989
500	-244.74	-106.1422		1200	-248.56	-189.9107
600	-245.87	-129.8410		1300	-248.09	-194.0521
700	-246.84	-146.9963		1400	-247.27	-197.2595
800	-247.64	-159.9904		1500	-246.07	-199.6227

The analyzed chemical reaction is exothermic ($Q_{rea}^{->} < 0$) in the valid temperature range 298–1500 K (because for H₂ it is 273–1800 K, for O₂: 298–1500 K, and for H₂O: 273–1800 K). Coefficients of the reaction heat according to [02] have been determined:

 $\Delta i_{298} = -241950 \qquad \Delta a = -14.96 \quad \Delta b = 0.003415 \qquad \Delta c' = 215500 \\ \Delta c = 0.00000655 \qquad \Delta d = -0.00000000272$

Hence, the thermodynamic effectivity quotient is to

$$\varepsilon = \frac{\left|\Delta\left(n\bar{e}_{\mu}^{x}\right)_{H2}^{<}\right| + \left|\Delta\left(n\bar{e}_{\mu}^{0}\right)_{H2O}\right| + \left|\Delta\left(n\bar{e}_{\mu}^{x}\right)_{N2}^{>}\right| + \left|E_{Q,rea}^{->}\right|}{\left|\nabla\left(n\bar{e}_{\mu}^{x}\right)_{O2}^{>}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{x}\right)_{H2O}^{<}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{H2}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{O2}\right|}$$

or
$$\varepsilon = \frac{6.0211 + 0.8749 + 10.3865 + \left|E_{Q,rea}^{->}\right|}{0.7696 + 5.9280 + 237.9219 + 1.8399} = \frac{17.2825 + \left|E_{Q,rea}^{->}\right|}{246.4595}$$

All the results are presented in the following results matrix, whereas additionally two arts of the so-called exergy efficiencies are calculated according to the formulas

$$\eta_{\rm ex} = \frac{\left|\Delta\left(n\bar{e}_{\mu}^{0}\right)_{\rm H2O}^{-}\right| + \left|E_{\rm Q,rea}^{-}\right|}{\left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\rm H2}^{-}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\rm O2}^{-}\right|} = \frac{10.3865 + \left|E_{\rm Q,rea}^{-}\right|}{237.9219 + 1,8399} = \frac{10.3865 + \left|E_{\rm Q,rea}^{-}\right|}{239.7618}$$

and

$$\eta_{\rm ex}^{\rm i} = \frac{\left|E_{\rm Q,rea}^{->}\right|}{\left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\rm H2}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{-0}\right)_{\rm Q2}\right|} = \frac{\left|E_{\rm Q,rea}^{->}\right|}{237.9219 + 1.8399} = \frac{\left|E_{\rm Q,rea}^{->}\right|}{239.7618}$$

process temperature	thermodynamic effectivity	exergy efficiency			
T [K]	ε	$\eta_{ m ex}$	$\eta_{ m ex}$ '		
298.15	0.1195	0.0941	0.0508		
300	0.1253	0.1000	0.0567		
400	0.3587	0.3399	0.2966		
500	0.5008	0.4860	0.4427		
600	0.5969	0.5849	0.5415		
700	0.6665	0.6564	0.6131		
800	0.7193	0.7106	0.6673		
900	0.7604	0.7529	0.7096		
1000	0.7932	0.7866	0.7433		
1100	0.8195	0.8137	0.7703		
1200	0.8407	0.8354	0.7921		
1300	0.8575	0.8527	0.8093		
1400	0.8705	0.8660	0.8227		
1500	0.8801	0.8759	0.8326		

If the same reaction of hydrogen combustion with the same air excess number should be analyzed, but at higher process pressure $(p>p_0)$, which is the case in gas turbines, in thermodynamic effectivity quotient the appropriate volume work is to be taken into account. Its exergy is to

$$E_{\rm L,rea}^{->} = \left(1 - \frac{p_0}{p}\right) L_{\rm rea}^{-} = -\left(p - p_0\right) \left(V_{\rm rea,2} - V_{\rm rea,1}\right)$$

and, if it is less than zero (i.e. negative) the volume work and its exergy are produced in the chemical reaction balance area, or

$$E_{\rm L,rea}^{+>} = \left(1 - \frac{p_0}{p}\right) L_{\rm rea}^{-} = -\left(p - p_0\right) \left(V_{\rm rea,2} - V_{\rm rea,1}\right)$$

if it is greater than zero (i.e. positive) the both quantities are supplied into the chemical reaction balance area. It is in analogy to the heat and its temperature T in relation to the natural environment value T_0 . For the above relations has been assumed from the very start that the process pressure p higher is than the natural environment value p_0 . Is there the perfect gas considered, then

$$V_{\text{rea},2} - V_{\text{rea},1} = (n_2 - n_1) \frac{\overline{R}T}{p} = -0.5 \cdot \frac{\overline{R}T}{p}$$

where T and p are given values (the isobaric-isotherm chemical reaction) and $n_2 - n_1 = -0.5$. Hence, for the process pressure of p=10 bar it yields

$$E_{\rm L,rea}^{+>} = -\left(10 \cdot 10^5 - 1 \cdot 10^5\right) \left(-0.5 \cdot \frac{0.0083143 \cdot T}{10 \cdot 10^5}\right) \left[{\rm Pa} \cdot {\rm mol} \cdot \frac{\rm kJ \cdot K}{\rm mol} \cdot {\rm K} \cdot {\rm Pa}\right] = 0.0037 \cdot T \, [\rm kJ]$$

The calculated numerical values oft he volume work exergies are to:

<i>T</i> [K]	$E^{\scriptscriptstyle +>}_{\rm L,rea}$ [kJ]	<i>T</i> [K]	$E^{\scriptscriptstyle +>}_{\rm L,rea}$ [kJ]
298.15	1.1155	900	3.3673
300	1.1224	1000	3.7414
400	1.4966	1100	4.1156
500	1.8707	1200	4.4897
600	2.2449	1300	4.8639
700	2.6190	1400	5.2380
800	2.9931	1500	5.6121

The thermodynamic process effectivity of such a high pressure hydrogen combustion equals to

$$\begin{split} \varepsilon &= \frac{\left| \Delta \left(n \bar{e}_{\mu}^{x} \right)_{\text{H2}}^{<} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{0} \right)_{\text{H2O}} \right| + \left| \Delta \left(n \bar{e}_{\mu}^{z} \right)_{\text{N2}}^{>} \right| + \left| E_{\text{Q,rea}}^{->} \right|}{\left| \nabla \left(n \bar{e}_{\mu}^{x} \right)_{\text{O2}}^{>} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{z} \right)_{\text{H2O}}^{<} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{0} \right)_{\text{H2}} \right| + \left| \nabla \left(n \bar{e}_{\mu}^{0} \right)_{\text{O2}} \right| + \left| E_{\text{L,rea}}^{+>} \right|}{\text{or}} \\ \varepsilon &= \frac{6.0211 + 0.8749 + 10.3865 + \left| E_{\text{Q,rea}}^{->} \right|}{0.7696 + 5.9280 + 237.9219 + 1.8399 + \left| E_{\text{L,rea}}^{+>} \right|} = \frac{17.2825 + \left| E_{\text{Q,rea}}^{->} \right|}{246.4595 + \left| E_{\text{L,rea}}^{+>} \right|} \end{split}$$

The results are presented in the following table (exergy efficiencies η_{ex} and η_{ex} ' according to the previously in this Chapter formulas) have been additionally calculated.

Prozeßtemperatur	thermodynamische Prozeßeffektivität	exergetischer	Wirkungsgrad
<i>T</i> [K]	ε	$\eta_{ m ex}$	$\eta_{ m ex}$ '
298.15	0.1031	0.0941	0.0508
300	0.1247	0.1000	0.0567
400	0.3565	0.3399	0.2966
500	0.4970	0.4860	0.4427
600	0.5916	0.5849	0.5415
700	0.6595	0.6564	0.6131
800	0.7106	0.7106	0.6673
900	0.7502	0.7529	0.7096
1000	0.7813	0.7866	0.7433
1100	0.8061	0.8137	0.7703
1200	0.8256	0.8354	0.7921
1300	0.8409	0.8527	0.8093
1400	0.8524	0.8660	0.8227
1500	0.8605	0.8759	0.8326

4 EQUILIBRIUM CHEMICAL REACTION OF C-GASIFICATION

The stoichiometric equilibrium chemical reaction

 $C + H_2O = CO + H_2$

will be analyzed, for which the approximated dependence of the equilibrium constant on process temperature is given by

$$\lg \frac{1}{K_{\rm p}} = -1.5561 \cdot \lg T - \frac{6740.5}{T} - 2.554 - 0.0001092 \cdot T + 0.028 \cdot 10^{-6} T^2$$

[04]–[05], and which occurs at the unitary pressure. At a given temperature T the equilibrium is characterized by the advancement of the reaction ξ_{eq} , i.e. from

$$K_{\rm p} = \frac{x_{\rm CO} x_{\rm H2}}{x_{\rm H2O}} \frac{1}{p} = \frac{\xi_{\rm eq}^2}{\left(1 - \xi_{\rm eq}\right)\left(1 + \xi_{\rm eq}\right)} \frac{1}{p} = \frac{\xi_{\rm eq}^2}{1 - \xi_{\rm eq}^2} \frac{1}{p} \text{ will be } \xi_{\rm eq} = \sqrt{\frac{K_{\rm p}}{K_{\rm p} + 1}}$$

The results are put together in the following matrix table:

Т [К]	K _p	ξeq	n ₂ gas	$n_{ m H2O}$ $x_{ m H2O}$	$n_{\rm CO}$ $x_{\rm CO}$	n_{H2} x_{H2}	$Q_{\rm rea}(\xi=1)$ [kJ]	$E_{ ext{Q,rea}}(\xi=1)$ [kJ]	$\xi_{ m eq} Q_{ m rea} \ [m kJ]$	$\frac{\xi_{\rm eq} E_{\rm Q,rea}}{\rm [kJ]}$	Е
800	0.0347	0.1832	1.1832	0.8168 0.6903	0.1832 0.1548	0.1832 0.1548	135.24	24.7752	87.38	16.0063	0.9872
850	0.1173	0.3240	1.3240	0.6759 0.5105	$0.3240 \\ 0.2447$	$0.3240 \\ 0.2447$	135.41	43.8817	90.30	29.2639	0.98841
900	0.3473	0.5077	1.5077	0.4923 0.3265	0.5077 0.3367	0.5077 0.3367	135.55	68,8225	92.91	47.1702	0.98628
950	0.9191	0.6920	1.6920	0.3079 0.1820	0.6920 0.4090	0.6920 0.4090	135.67	93.8898	95.23	65.9057	0.9850
1000	2.2110	0.8298	1.8298	0.1702 0.0930	0.8298 0.4535	0.8298 0.4535	135.76	11.657	97.32	80.7580	0.9831
1050	4.9003	0.9113	1.9113	0.0887 0.0464	0.9113 0.4768	0.9113 0.4768	135.83	123.788	99.20	90.4065	0.9809
1100	10.115	0.9539	1.9539	0.0460 0.0236	0.9539 0.4882	0.9539 0.4882	135.88	129.624	10.90	96.2578	0.9785
1150	19.626	0.9754	1.9754	0.0245 0.0124	0.9754 0.4938	0.9754 0.4938	135.90	132.571	102.44	99.9301	0.9760
1200	36.064	0.9864	1.9864	0.0136 0.0068	$0.9864 \\ 0.4966$	0.9864 0.4966	135.91	134.066	103.84	102.432	0.9735
1250	63.161	0.9922	1.9922	0.0078 0.0039	0.9922 0.4980	0.9922 0.4980	135.89	134.835	105.11	104.292	0.9711
1300	106.00	0.9953	1.9953	0.0047 0.0023	0.9953 0.4988	0.9953 0.4988	135.86	135.227	106.27	105.773	0.9695

With a mixing heat of the reactants equal to zero, the heat effect of the reaction is $Q_{rea}>0$, i.e. it is endothermic.

Determining the algebraic sign inversion point K for concentration exergy changes:

- water steam (
$$j \equiv H_2O$$
) there is

 $v_{j} = -1 \qquad n_{j,1} = 1 \qquad n_{l} = 1 \qquad \sum v_{j} = 1 \qquad x_{j,0} = 1 \quad (,, apparent")$ and the Eq. (01) will be to $-\ln\left(\frac{1-\xi_{j,extr}}{1+\xi_{j,extr}}\right) - 1 - \frac{1-\xi_{j,extr}}{1+\xi_{j,extr}} = 0$

The solution is $\xi_{\text{H2O,extr}}=0.564376$, from which $n_{\text{extr},(\text{H2O})}=1.564376$ and $x_{\text{H2O,extr}}=0.278464$ can be obtained.

- carbon monoxide (j=CO) with

 $v_{j} = 1 \qquad n_{j,1} = 0 \qquad n_{1} = 1 \qquad \sum v_{j} = 1 \qquad x_{j,0} = 1 \quad (,, apparent'')$ the Eq. (01) is $\ln\left(\frac{\xi_{j,extr}}{1+\xi_{i,extr}}\right) + 1 - \frac{\xi_{j,extr}}{1-\xi_{i,extr}} = 0$

$$(1+\zeta_{j,extr})$$
 $(1-\zeta_{j,extr})$

which does not give a solution in a solely sensible limits from zero to one (this reactant does not achieve the composition exergy inversion point K.

- hydrogen $(j=H_2)$ with

 $v_j = 1$ $n_{j,1} = 0$ $n_1 = 1$ $\sum v_j = 1$ $x_{j,0} = 1$ (*"apparent"*) will be the same, as with coal monoxide was: in the analyzed chemical reaction the hydrogen does not achieve the appropriate inversion point.

Initial molar fractions of the reactants (substrates) of the gaseous phase are assumed to be $x_{\text{H2O},1}=1$ $x_{\text{CO},1}=0$ $x_{\text{H2},1}=0$

and the end fractions are put in the above table. The appropriate rating quotient, the thermodynamic effectivity for the chemical reaction can be calculated from the formula

$$\varepsilon = \frac{\left|\Delta\left(n\bar{e}_{\mu}^{x}\right)_{\rm H2O}^{\times}\right| + \left|\Delta\left(n\bar{e}_{\mu}^{x}\right)_{\rm CO}^{\times}\right| + \left|\Delta\left(n\bar{e}_{\mu}^{x}\right)_{\rm H2}^{\times}\right| + \left|\Delta\left(n\bar{e}_{\mu}^{0}\right)_{\rm CO}\right| + \left|\Delta\left(n\bar{e}_{\mu}^{0}\right)_{\rm H2}\right|}{\left|\nabla\left(n\bar{e}_{\mu}^{x}\right)_{\rm H2O}^{\times}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{x}\right)_{\rm CO}^{\times}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{x}\right)_{\rm H2}^{\times}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\rm C}\right| + \left|\nabla\left(n\bar{e}_{\mu}^{0}\right)_{\rm H2O}\right| + \left|E_{\rm Q,real}^{++}\right|}\right|}$$

Numerical values of the intermediate and the final results are presented in the above results matrix.

5 NON-STOICHIOMETRIC PROCESSES

The data for the following numerical example have been taken from [05], *Example 3.22*, pages 318–319 where the old, simple, but very efficient calculation method by P. DOLCH from the year 1939 has been presented. The coke layer (assumed as element carbon C) is at the process temperature of 1000 K (T_0 =283.15 K) and process pressure 1 ata ($p=p_0$) in a reactive interaction with the gasifying (or converting) agent water steam (1 mol H₂O per 1 mol of carbon) and pure oxygen (0.2 mol O₂ per every 1 mol of carbon). Thus, the total amount of the gaseous phase at the start was n_1 =1.2 mol with $x_{H20,1}$ =0.8333 and $x_{O2,1}$ =0.1667. At the end of the gasification process n_2 =2 moles strong gas has been obtained with following molar fractions: $x_{CO,2}$ =0.4112, $x_{CO2,2}$ =0.0887, $x_{H2,2}$ =0.3887 and $x_{H20,2}$ =0.1112.

The zero–exergy values for $T_0=283.15$ K for all the species represented in the process (1 mol carbon has been used) are: $\Delta \bar{e}_{\mu,C}^0 = 409.94623 \frac{\text{kJ}}{\text{mol}}$, $\Delta \bar{e}_{\mu,C0}^0 = 275.79287 \frac{\text{kJ}}{\text{mol}}$, $\Delta \bar{e}_{\mu,C02}^0 = 19.09745 \frac{\text{kJ}}{\text{mol}}$, $\Delta \bar{e}_{\mu,H2}^0 = 237.92189 \frac{\text{kJ}}{\text{mol}}$, $\Delta \bar{e}_{\mu,H20}^0 = 10.38647 \frac{\text{kJ}}{\text{mol}}$ and $\Delta \bar{e}_{\mu,O2}^0 = 3.67985 \frac{\text{kJ}}{\text{mol}}$, [07], p.57. Concentrations in the natural environment are $x_{O2,0}=0.21$, $x_{CO2,0}=0.0003$ and $x_{H2O,0}=1$.

For the chemical concentration exergy change algebraic sign inversion point K will be searched in the same way and with the same assumptions as there has been presented in [08] in the Chapter *Extraction*. The inversion point K parameters for all the species are first to find:

- carbon monoxide CO

With parameters

 $n_1=1.2 \text{ mol } x_{CO,1}=0 n_2=2.0 \text{ mol } x_{CO,2}=0.4114 x_{CO,0}=1 (,, apparent'')$

The coefficients a_{CO} and b_{CO} has been first determined and then the parameters of the inversion point **K**: $x_{CO,K}=0.501316$ and $n_{K(CO)}=2.17478$. It means, the point lies outside the appropriate concentration change between $x_{CO,1}$ and $x_{CO,2}$. Thus, the whole chemical concentration exergy change occurs below the point and is equal to

 $\nabla E_{\mu,\text{CO}}^{x<} = \left(n_2 x_{\text{CO},2} \ln x_{\text{CO},2} - n_1 x_{\text{CO},1} \ln x_{\text{CO},1} \right) \overline{R} T_0 = -0.7308 \overline{R} T_0 = -0.00608 \text{ kJ}$

- carbon dioxide CO₂

With parameters

 $n_1=1.2 \text{ mol } x_{\text{CO2},1}=0 \ n_2=2.0 \text{ mol } x_{\text{CO2},2}=0.088751 \ x_{\text{CO2},0}=0.0003$

The same procedure as above leads to the algebraic sign inversion point **K** lying inside the molar fractions change of CO₂. Its parameters are: $x_{CO2,K}=0.00011$ and $n_{K(CO2)}=1.200996$, which means that the molar fractions and the amount of the reactive mixture change according to the following scheme

$$\begin{array}{cccc} x_{\rm CO2}: & 0 & \rightarrow & 0.00011 & \rightarrow & 0.088751 \\ n: & 1.2 \ {\rm mol} & \rightarrow & 1.200996 \ {\rm mol} & \rightarrow & 0.088751 \ {\rm mol} \end{array}$$

Thus, the both chemical concentration exergy changes are

$$\Delta E_{\mu,\text{CO2}}^{x>} = \left(n_2 x_{\text{CO2},2} \ln \frac{x_{\text{CO2},2}}{x_{\text{CO2},0}} - n_{\text{K(CO2)}} x_{\text{CO2},\text{K}} \ln \frac{x_{\text{CO2},\text{K}}}{x_{\text{CO2},0}} \right) \overline{R} T_0 = 1.010085 \overline{R} T_0 = 0.00840 \text{ kJ}$$
$$\nabla E_{\mu,\text{CO2}}^{x<} = \left(n_{\text{K(CO2)}} x_{\text{CO2},\text{K}} \ln \frac{x_{\text{CO2},\text{K}}}{x_{\text{CO2},0}} - n_1 x_{\text{CO2},1} \ln \frac{x_{\text{CO2},1}}{x_{\text{CO2},0}} \right) \overline{R} T_0 = -0.000133 \overline{R} T_0 = -0.0000011 \text{ kJ}$$

hydrogen H₂

With parameters

 $n_1=1.2 \text{ mol } x_{H2,1}=0 n_2=2.0 \text{ mol } x_{H2,2}=0.3887 x_{H2,0}=1 (,, apparent'')$

The same procedure as above leads to the algebraic sign inversion point **K** lying outside the molar fractions change of H₂ (the parameters are: $x_{H2,K}=0.505105$ and $n_{K(H2)}=2.239441$) and the chemical concentration exergy change below the **K**-point equals to

 $\nabla E_{\mu,\text{H2}}^{x<} = \left(n_2 x_{\text{H2},2} \ln x_{\text{H2},2} - n_1 x_{\text{H2},1} \ln x_{\text{H2},1} \right) \overline{R} T_0 = -0.7346 \overline{R} T_0 = -0.00611 \text{ kJ}$

- water steam H₂O

With parameters

 $n_1 = 1.2 \text{ mol } x_{\text{H2O},1} = 0 \ n_2 = 2.0 \text{ mol } x_{\text{H2O},2} = 0.088751 \ x_{\text{H2O},0} = 1$

The same procedure as above leads to the algebraic sign inversion point **K** lying inside the molar fractions change of H₂O. Its parameters are: $x_{H2O,K}=0.294638$ and $n_{K(H2O)}=1.796823$, which means that the molar fractions and the amount of the reactive mixture change according to the following scheme

$x_{\rm H2O}$:	0.8333	\rightarrow	0.294638	\rightarrow	0.111249
<i>n</i> :	1.2 mol	\rightarrow	1.796823 mol	\rightarrow	2.0 mol

Thus, the both chemical concentration exergy changes are

$$\Delta E_{\mu,\text{H2O}}^{x<} = (n_2 x_{\text{H2O},2} \ln x_{\text{H2O},2} - n_{\text{K(H2O)}} x_{\text{H2O},\text{K}} \ln x_{\text{H2O},\text{K}}) \overline{R} T_0 = 0.1583 \overline{R} T_0 = 0.00132 \text{ kJ}$$
$$\nabla E_{\mu,\text{H2O}}^{x<} = (n_{\text{K(H2O)}} x_{\text{H2O},\text{K}} \ln x_{\text{H2O},\text{K}} - n_1 x_{\text{H2O},1} \ln x_{\text{H2O},1}) \overline{R} T_0 = -0.4646 \overline{R} T_0 = -0.00386 \text{ kJ}$$

oxygen O₂

With parameters

 $n_1=1.2 \text{ mol } x_{O2,1}=0.1667 n_2=2.0 \text{ mol } x_{O2,2}=0 x_{O2,0}=0.21$

The same procedure as above leads to the algebraic sign inversion point **K** lying inside the molar fractions change of O₂. Its parameters are: $x_{O2,K}=0.062393$ and $n_{K(O2)}=1.700514$, which means that the molar fractions and the amount of the reactive mixture change according to the following scheme

x_{O2} :	0.1667	\rightarrow	0.062393	\rightarrow	0
<i>n</i> :	1.2 mol	\rightarrow	1.700514 mol	\rightarrow	2.0 mol

Thus, the both chemical concentration exergy changes are

$$\Delta E_{\mu,O2}^{x<} = \left(n_2 x_{O2,2} - n_{K(O2)} x_{O2,K} \ln \frac{x_{O2,K}}{x_{O2,O}} \right) \overline{R} T_0 = 0.1288 \overline{R} T_0 = 0.00107 \text{ kJ}$$

$$\begin{split} \nabla E_{\mu,\text{O2}}^{\text{x>}} &= \left(n_{\text{K}(\text{O2})} x_{\text{O2},\text{K}} \ln \frac{x_{\text{O2},\text{K}}}{x_{\text{O2},0}} - n_{1} x_{\text{O2},1} \ln \frac{x_{\text{O2},1}}{x_{\text{O2},0}} \right) \overline{R} T_{0} = -0.0825 \overline{R} T_{0} = -0.00069 \text{ kJ} \\ \text{The zero exergy changes of the particular species are to:} \\ \Delta E_{\mu,\text{CO}}^{0} &= \left(n_{2} x_{\text{CO},2} - n_{1} x_{\text{CO},1} \right) \Delta \overline{e}_{\mu,\text{CO}}^{0} = 226.8391 \text{ kJ} \Delta E_{\mu,\text{CO2}}^{0} = \left(n_{2} x_{\text{CO2},2} - n_{1} x_{\text{CO2},1} \right) \Delta \overline{e}_{\mu,\text{CO2}}^{0} = 3.8984 \text{ kJ} \\ \Delta E_{\mu,\text{H2}}^{0} &= \left(n_{2} x_{\text{H2},2} - n_{1} x_{\text{H2},1} \right) \Delta \overline{e}_{\mu,\text{H2}}^{0} = 184.9847 \text{ kJ} \nabla E_{\mu,\text{H2}0}^{0} = \left(n_{2} x_{\text{H2},2} - n_{1} x_{\text{H2},1} \right) \Delta \overline{e}_{\mu,\text{O2}}^{0} = -0.7360 \text{ kJ} \nabla E_{\mu,\text{C}}^{0} = -\Delta \overline{e}_{\mu,\text{C}}^{0} = -409.9462 \text{ kJ} \\ \text{Hence, the thermodynamic effectivity quotient should be equal to} \\ \varepsilon &= \frac{\left| \Delta E_{\mu,\text{CO2}}^{\text{x}<} \right| + \left| \Delta E_{\mu,\text{H2}0}^{\text{x}<} \right| + \left| \Delta E_{\mu,\text{O2}}^{\text{x}>} \right| + \left| \Delta E_{\mu,\text{O2}}^{0} \right| + \left| \Delta E_{\mu,\text{O2}}^{0} \right| + \left| \nabla E_{\mu,\text{CO}}^{0} \right| + \left| \nabla E_{\mu,\text{CO}}^{0} \right| + \left| \nabla E_{\mu,\text{CO}}^{0} \right| + \left| \Delta E_{\mu,\text{H2}}^{0} \right| \\ \varepsilon &= \frac{\left| \Delta E_{\mu,\text{CO2}}^{\text{x}<} \right| + \left| \nabla E_{\mu,\text{H2}}^{\text{x}>} \right| + \left| \nabla E_{\mu,\text{H2}}^{\text{x}>} \right| + \left| \nabla E_{\mu,\text{CO}}^{\text{x}>} \right| + \left| \nabla E_{\mu,\text{CO}}^{0} \right| + \left| \Delta E_{\mu,\text{H2}}^{0} \right| + \left| \nabla E_{\mu,\text{H2}}^{0} \right| + \left| \nabla E_{\mu,\text{H2}}^{0} \right| + \left| \Delta E_{\mu,\text{CO}}^{0} \right| + \left| \nabla E_{\mu,\text{H2}}^{0} \right| + \left| \nabla E_{\mu,\text{H2}}^{0} \right| + \left| \nabla E_{\mu,\text{H2}}^{0} \right| + \left| \nabla E_{\mu,\text{C}}^{0} \right| + \left| \nabla E_{\mu,\text{C}$$

This result shows that the analyzed non-stoichiometric gasifying process can occur without any heat supply from outer systems. In such a case the thermodynamic effectivity quotient would be equal to ε =415.7330/418.7744=0.9927, which confirms the *Second Law* condition (P. DOLCH has assumed the chemical reactions set C+H₂O=CO+H₂ and CO+H₂O=CO₂+H₂, [05]). In fact, the practical values of the quotient are lower, e.g. in the previous Chapter they lie by 0.98 for the same process temperature. Thus, the heat from outside should be supplied, just like more complex examples of gasification processes computed by authors has showed. Assuming that the above quotient should be equal to 0.85, the heat exergy should be

$$E_{\rm Q}^{+>} = 70.3232 \, \rm kJ$$

and the heat supplied (at 1000 K by $T_0=283.15$ K) $Q_+=98.1$ kJ. The both amounts refer to 1 mol of the gasified coke (element carbon C).

6 CONCLUSIONS

The presented examples show the correctness of the theoretical approach worked out in the earlier contribution. The simultaneous stoichiometric chemical reactions, however, will be discussed in another place because the appropriate formulas are very large. They could be proved positive, either. Moreover, the formulation of the thermodynamic quotient can be a sufficient condition for the statement, if the analyzed chemical process can be realized or not. It results from the *Second Law of Thermodynamics*.

In the case of some chemical reactions, just like e.g. the so-called "shift reaction" $CO+H_2O=CO_2+H_2$ or complex non-stoichiometric gasification processes it can be estimated the particular species amounts and the quantity of heat supply to make the process possible at all, [09].

Worked out within the research project:

Evaluation, Verification and Interpretation of the Environmental Loads of the Czech Republic – IN-TERVIRON 2B06068

REFERENCES

- 1. KOZACZKA J., KOLAT P.: Exergy in Chemical Reactions of Combustion and Gasification,
- SZARAWARA J.: Termodynamika chemiczna stosowana (Seria Inżynieria Chemiczna), wyd. 3., Wydawnictwa Naukowo–Techniczne, Warszawa 1997, ISBN 83–204–2121–7
- 3. KOZACZKA J.: Analiza termodynamiczna, Wydawnictwo AGH, SU 1110, Kraków 1988
- 4. KOZACZKA J.: Procesy spalania inżynierskie metody obliczeń, SU 1343, Wydawnictwa AGH, Kraków 1993
- 5. KOZACZKA J.: Procesy zgazowania inżynierskie metody obliczeń, SU 1407, Wydawnictwa AGH, Kraków 1994
- 6. KOZACZKA J.: Chemische Nutzarbeit, Nullexergie und die molare Standardexergie in den Analysen der technischen Thermodynamik, Zeszyty Naukowe AGH Mechanika, 19(2000)3, S.321–334
- KOZACZKA J.: Thermodynamic Analysis of Energy Conversion Processes, Problems of Mechanical Engineering and Robotics Nr 8, Faculty of Mechanical Engineering and Robotics, AGH – University of Science and Technology, Kraków 2002, ISBN 83–913400–0–7
- 8. KOZACZKA J., KOLAT P.: *Exergy in Technological Separation Processes*, Transactions of the VŠB–Technical University of Ostrava, Mechanical Series, No. 1, 2010, vol. LVI
- 9. ROUBÍČEK V., KOZACZKA J., KOLAT P.: Určení termodynamické efektivity chemických reakcí při spalovacích a zplyňovacích procesech v energetice, Certifikovaná metodika podle směrnice úřadu vlády č.j. 10810/2008–RVV, Výzkumný projekt: Evaluation, Verification and Interpretation of the Environmental Loads of the Czech Republic INTERVIRON 2B06068, Vysoká škola báňská TU Ostrava, Fakulta strojní, Katedra energetiky, Ostrava 2009