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Abstract 

This paper deals with suitable nonlinear optimization in engineering applications via 
mathematical programming. This tool is used for optimization and control of production of steel slabs 
and inverse tasks, such as determination of boundary conditions. Mathematical models contain 2D 
Fourier-Kirchhoff equation including boundary conditions. Presence of phase and structural changes 
is covered by enthalpy approach. The software implementation was executed as a link between 
MATLAB and modeling language GAMS. 

Abstrakt 

Tento článek se zabývá vhodnou nelineární optimalizací pro inženýrské aplikace za pomoci 
matematického programování. Tento nástroj je použit pro optimalizaci a řízení produkce ocelových 
bram a řešení inverzních úloh, jako je určování okrajových podmínek. Matematický model obsahuje 
2D Fourierrovu-Kirchhoffovu rovnici včetně okrajových podmínek. Přítomnost fázových a 
strukturálních přeměn je řešena pomocí přístupu entalpie. Softwarové řešení je provedeno spojením 
programu MATLAB a modelovacího jazyka GAMS. 

 1 INTRODUCTION 

Optimization is the act of obtaining the best result under given circumstances. In design, 
construction, and maintenance of any engineering system, engineers have to take many technological 
and managerial decisions at several stages. The ultimate goal of all such decisions is either to 
minimize the effort required or to maximize the desired benefit. Since the effort required or the 
benefit desired in any practical situation can be expressed as a function of certain decision variables, 
optimization can be defined as the process of finding the conditions that give the maximum or 
minimum value of a function. 

There is no single method available for solving all optimization problems efficiently. Hence a 
number of optimization methods have been developed for solving different types of optimization 
problems. The optimum seeking methods are also known as mathematical programming techniques 
and are generally studied as a part of operations research. Operations research is a branch of 
mathematics concerned with the application of scientific methods and techniques to decision making 
problems and with establishing the best or optimal solutions. The beginnings of the subject of 
operations research can be traced to the early period of World War II. After the war, the ideas 
advanced in military operations were adapted to improve efficiency and productivity in the civilian 
sector [1]. 

The operations research technique contains many mathematical methods. For instance calculus 
methods, calculus of variation, mathematical programming, game theory, statistical decision theory, 
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Markov process, queuing theory, simulation methods, cluster analysis etc. Modern or non-traditional 
optimization techniques are for instance genetic algorithms, simulated annealing, neural networks and 
fuzzy optimization. 

Our main task is finding of appropriate tools for investigation real engineering problems via 
operations research. These problems contain heat transfer problems such as control of continuous 
casting process or inverse tasks. 

 2 OPTIMIZATION AND MATHEMATICAL PROGRAMMING 

Mathematical programming techniques are useful in finding the minimum of a function of 
several variables under a prescribed set of constraints. The first step in mathematical programming is 
substitute real problem to a mathematical model. In practice we are very often forced to simplified 
real situation to more suitable way, but these simplifications cannot modify the optimization process 
in a significant way. 

Mathematical model is basically created from the equation of objective function and the set of 
constraints. The goal is to find minimum or maximum of this function. Constraints can represent 
limitations on the behavior, performance of the system or physical limitations on design variables, 
such as availability, fabricability, and transportability. Any engineering system or component is 
defined by a set of quantities some of which are viewed as variables during the design process. In 
general, certain quantities are usually fixed at the outset and these are called preassigned parameters. 
All the other quantities are treated as variables in the design process and are called design or decision 
variables x. If an n-dimensional Cartesian space with each coordinate axis representing a design 
variable xi (i = 1, 2,..., n) is considered, the space is called the design variable space or simply design 
space. If the constraints do not have significant influence in certain design problems and our model 
includes only objective function, we called problem as unconstrained optimization problem. 
Otherwise we called problem as constrained optimization problem [1, 2]. 

 
We can roughly sort mathematical models into four groups according to equations character: 

 Linear programming - if the objective function and all the constraints in model are 
linear functions of the design variables. 

 Nonlinear programming - if any of the functions among the objective and constraint 
functions in model is nonlinear. 

 Integer programming - if some or all of the design variables x1, x2, . . . , xn of an 
optimization problem are restricted to take on only integer (or discrete) values. 

 Stochastic programming - if some or all of the parameters (design variables and/or 
preassigned parameters) are probabilistic (nondeterministic or stochastic).  

 2.1 Nonlinear programming model  

Optimization problems presented in this paper were created as sets of equations, where design 
variables are in scalar product form. Thus the use of nonlinear programming is appropriate [2]. 
Nonlinear model can be formulated as follows: 
  Xxxhxgx  ,0)(,0)();(min f ,  (1) 
where: 
x = x1, …, xn  - is design variables vector, 
f(x)  - is objective function, 
g(x) = (g1(x), ..., gm(x))T  - is constraints vector, 
h(x) = (h1(x), ..., hp(x))T   - is constraints vector. 
m = 0 and p = 0 for unconstrained optimization case. 

To find an optimum solution in large scale problems without a computer approach is not 
possible. Computer codes to solve mathematical programming problems are called as solvers. There 
is no single solver available for solving all optimization problems efficiently. Thus modeler should 
decide which specific solver for specific problem is appropriate. This problem can be particularly 
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solved by using modeling languages, such as AMPL, GAMS, XPRESS-MP etc. These modeling 
languages work as an interface between users and solvers. 

 2.2 Modeling language GAMS 

The optimization in this paper is solved by modeling language GAMS (General Algebraic 
Modeling System). GAMS is specifically designed for modeling linear, nonlinear and mixed integer 
optimization problems. The system is especially useful with large, complex problems. More 
information can be found at http://www.gams.com/. For nonlinear optimization we use a nonlinear 
solver CONOPT. Furthermore, we use mathematical software MATLAB for calculating the starting 
optimization values and for drawing (animating) the final results. 

 3 OPTIMIZATION IN ENGINEERING APPLICATIONS 

Mathematical programming approach in this paper is used for two engineering problems. We 
can characterize problems as heat transfer problems. The mathematical models that were employed 
are based on mathematical model of temperature field. Modeling of temperature field in continuous 
casting process and inverse task problems is a numerically difficult problem, which contains a large 
system of nonlinear equations. The main task is finding appropriate mathematical tools for these type 
of problems, thus to examine a simplified 2D model is satisfactory. From three basic heat transfers 
we will consider only conduction, which plays a dominant role in the process. Convection and 
radiation will be considered only as boundary conditions.  

 3.1 Optimal control for continuous casting problem 

Our main interest is in the water spray control in secondary cooling zone which effect final 
product quality. Simplified 2D model which assumes symmetry on cross section is show in Fig. 1. 
Another simplification is considering four cooling circuits instead of thirteen, which can occur in real 
machine. 

 

 
Fig. 1 Continuous casting scheme 

We consider casting speed and four heat transfer coefficients, which represent water cooling 
circuits, as control parameters. Optimization should answer the question, how to set these parameters 
for temperature constraints on surface and allowed metallurgical length in optimal way.  

The temperature field of the slab can be described by Fourier-Kirchhoff equation. There are 
phase and structural changes, thus the use of enthalpy approach with thermo-dynamical function of 
volume enthalpy H [J/m3] is appropriate [3, 4, 6].  
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where: 
  - is thermal conductivity [W/mK], 
  - is temperature [K], 
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 - is real time [s], 
x, z  - are coordinates, 
vz  - is velocity ingredient [m/s]. 

In order to be exhaustive, we have to add initial condition and boundary conditions. The initial 
condition describes initial temperature distribution in the slab. There are four different boundary 
conditions. Relationship (2) can be approximated by finite-difference terms [4], on an explicit 
formula. 

In equations (2) is enthalpy present together with temperature, so we need to recalculate 
enthalpy to temperature for each node and each time. The function of enthalpy is not known as a 
function, but as a tabular form. Various search techniques are often used in practice. This approach is 
not appropriate for optimization. The relation between enthalpy and temperature can be fitted by a 
curve, which describes the relation in the best way. For instance, we can fit the data by interpolating 
polynomial of the twentieth degree, Fourier series, etc [5]. 

In the objective function, the information maximal possible casting speed and surface 
temperature smoothness is required, which describes compromise between final slab quality and 
productivity time. Thus: 
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Surface temperature smoothness is created by minimizing of maximal temperature difference 
between two neighbouring nodes. As constraints we have kept the metallurgical length, temperature 
T1 and T2, and heat transfer coefficients between minimal and maximal values. Next constraints are 
relationship between enthalpy and temperature, equations for temperature field (2) and initial and 
boundary conditions. In this way, we have an objective function (3) and set of constraints for all 
nodes including all time. For instance when we consider rough mesh 10x50x1000, we have 
approximately 1,000,000 constraints and variables, which is a very complex optimization problem in 
nonlinear programming [2]. This model was solved by modeling language GAMS. Optimal control 
parameters as casting speed and heat transfer coefficients were found. Final temperature field, surface 
and core temperatures are shows in Fig 2. 

 
Fig. 2 Temperature field, surface and core temperatures 

 3.2 Optimization for inverse task problem 

In this problem, attention is focused on the search for boundary conditions describing the heat 
transfer in engineering applications of spray cooling of metal surfaces during casting [4]. Concretely 
parameters which describing heat transfer coefficient. Slab temperature field is created by equation 
(2) with last term absence, describing steel flow. We assume normal density function for shape 
approximation of heat transfer coefficient: 
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where: 
 - is mean, 
 - is variance. 

 
 

Fig. 3 Up – cooling scheme (htc distribution), Down – thermocouples position  

Objective is to find unknown htc via known temperature characteristics from experiment. 
Thermocouples positions are shown in Fig. 3 as well as htc distribution. The objective function is 
created as minimization differences between measured and computed temperatures in thermocouples 
positions. Thus: 
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where: 
Ti - is calculated temperature in position i [K], 
Ti

*  - is measured temperature in position i [K]. 
In Fig. 4 we can see experimental measurement and computer calculation comparison.   

 
Fig. 4 Left – measured data from thermocouples, Right – calculated temperatures  
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 4 CONCLUSION 
The paper deals with suitable mathematical tools for optimizing control of continuous slab 

casting process and inverse tasks. We created the original mathematical models. Apart from that, 
nonlinear mathematical programming approach seems to be effective method for the continuous 
casting simulations and inverse tasks problems. The future development of our work is improvement 
of this model to 3D model and considering more factors, which affect the continuous casting process 
and cooling systems.  
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