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ROBUSTNI LADENI Pl REGULATORU PRO INTERVALOVE SYSTEMY

Abstract

This paper deals with combined graphical-algebraic design of PI controllers which ensure
robust stabilization of interval systems. The stability regions for parameters of these controllers are
obtained via computing and plotting the stability boundary locus supplemented with the sixteen plant
theorem and the final choice of the controller is based on an algebraic approach. A third order interval
plant is robustly controlled in an illustrative example.

Abstrakt

Tento ¢lanek se zabyva kombinovanym graficko-algebraickym navrhem Pl regulédtort, které
zgjist'uji robustni stabilizaci intervalovych soustav. Oblasti stability pro parametry téchto regulétora
jsou ziskany pomoci vypoctu a vykreseni umisténi hranice stability, doplnéné vétou o Sestnécti
soustavach, pricemz finalni volba reguldtoru je zalozena na algebraickém pristupu. V ramci
ilustrativniho ptikladu je robustné tizenainterval ova soustava tietiho radu.

1 INTRODUCTION

A mathematical model with interval uncertainty is a standard tool for description of real tech-
nological processes. This approach helps to incorporate the simplifications made during modelling,
imprecise knowledge of plant parameters or its variability into the mathematical model and subse-
guently into the control synthesis itself. The designed controller should ensure some desired proper-
ties of the control loop for the whole interval plant family. The essentia requirement of all usersis
the (robust) stability of the feedback control system.

Despite existence of many modern control technologies, the present industrial practice still
prefers the application of classical Pl or PID compensators with fixed parameters [13], [14]. The rea-
son of this popularity is that PI(D) controllers are cheap, reliable, easily utilizable and usually suffi-
cient at the sametime. Thus, an easy and effective way of PI/PID tuning is still very topical, especial-
ly in case that these algorithms are able to cope with various uncertain conditions comparably with
other approaches[15], [16].

The main aim of this paper is to present a control design method for interval systems and to
demonstrate its capabilities on an example for the third order interval plant. The computation of ro-
bustly stabilizing Pl controllers with fixed parameters uses the stability boundary locus plotting in
combination with the sixteen plant theorem, which is described in [10], [11]. Following choice of the
final controller is based on general solutions of Diophantine equations in the ring of proper and Hur-
witz stable rational functions (Rps), Y oula-Kucera parameterizations and conditions of divisibility in
the specific ring. Besides, the selected controller can be further tuned through the only scalar tuning
parameter m> 0. The main ideas of this technique are adopted from [4], [8], [12].

’ Ing., Ph.D., Tomas Bata University in Zlin, Faculty of Applied Informatics, Department of Automation and
Control Engineering, Nad Stranémi 4511, Zlin, tel. (+420) 576 033 015, e-mail rmatusu@fai.utb.cz

”prof., Ing., CSc., Tomas Bata University in Zlin, Faculty of Applied Informatics, Department of Automation
and Control Engineering, Nad Stréanémi 4511, ZIin, tel. (+420) 576 035 257, e-mail prokop@fai.utb.cz

123


mailto:rmatusu@fai.utb.cz
mailto:prokop@fai.utb.cz

2 DETERMINATION OF STABILIZING PI CONTROLLERS

A possible approach to calculation of stabilizing PI controllers based on plotting the stability
boundary locus is proposed in [10], [11]. The method supposes the classical closed-loop control sys-
tem with the controlled plant:

B(s
G(s) =2 ®
A(s)
and PI controller:
C(S):kp+ﬁzw (2)
s s
First, one needs to use the substitution s= jw in the plant (1) and subsequently to decompose the

numerator and denominator of this transfer function into their even and odd parts:
Be (-w?) + jwBy (- w?)
A (- W) + jwA, (- w?)

Then, the expression of closed-loop characteristic polynomial and setting the real and imaginary parts
to zero lead to the equations:

G(jw) = ©)

= WA CW)B, (W) + A (-W)B (-’
" -WBS(-w) - B (-w?)

e =y ACW)B (W) - A (-W)B(-w)
' -WBS(-w?) - BY(-w?)

4)

Simultaneous solving of these relations and plotting the obtained valuesinto the (kp K ) plane

result in the stability boundary locus, which splits the (k,,k ) plane up to the stable and unstable

regions. The determination of the stabilizing one(s) can be done via a test point within each region.
Furthermore, this technique can be embellished with the Nyquist plot based approach from [9] to
avoid potential problems with proper frequency gridding. In this refinement, the frequency axis can
be divided into several intervals by the real values of w which fulfil:

Im[G(s)] =0 )
Such intervals are then sufficient for testing.

3 IMPROVEMENT OF THE METHOD FOR INTERVAL PLANTS

So far, the area of stabilizing controller coefficients for a given plant with only fixed parame-
ters can be computed. However, the paper [10] has improved the stabilization also for interval sys-
tems using the simple idea of its combination with the sixteen plant theorem [1], [2]. In compliance
with this principle, afirst order controller robustly stabilizes an interval plant

COMR- LAk ©
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G(s,b,a) =

where b',b*,a,a" arelower and upper bounds for numerator and denominator parameters, respec-
tively, if and only if it stabilizesits 16 Kharitonov plants, which are defined as:
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where i,i,1 {1,2,3,4} ; and B(s) to B,(s) and A(s) to A,(s) are the Kharitonov polynomials for

the numerator and denominator of the interval system (6), respectively.

()

13,1

Remind that the Kharitonov polynomials e.g. for an interval polynomial:

B(sb)=a &/ ;' s 8)
i=0
can be constructed using the upper and lower bounds of interval parameters according to therule [3]:
Bi(s) =h, +hs+bs’ +bs’+L
B,(s) =by +hs+b,s’ +by s’ +L
By(s)=hy +hjs+b,s" +bjs’+L
B,(s) =l +hs+b)s’ +b;s’+ L

The stabilization of an interval plant is grounded in the stabilization of all 16 fixed Kharitonov plants
together, and so the final stability region is given by intersection of all partia regions.

©)

4 ALGEBRAIC DESIGN OF A CONTROLLER

The methodology from the previous sections allows determining the (robustly) stabilizing
combinations of proportional and integral gainsin Pl controller. However, the specific choice of the
compensator itself is still an open question. A possible algebraic control design method is based on
ideas developed in [4], [12]. It uses genera solutions of Diophantine equations in Rps. Moreover, it
supposes the utilization of the known Y oula-Ku¢era parameterization, which allows generating infi-
nite amount of possible stabilizing controllers, while the choice of the final one depends on the de-
sired properties mathematically represented by conditions of divisibility in the specific ring. Anyway,
the selected controller can be further tuned. One of advantages of this approach is that behavior of
regulators can be influenced by the only scalar tuning parameter m> 0. Details of this method can be
found for examplein [5], [8].

From a set of developed results, this contribution takes advantage of the tuning rules for the
first order plant:

G(s) = b, (10)
s+a,
and feedback Pl controller:
C(s) = kes+k (12)

which ensures the bounded-input bounded-output (BIBO) stability of the closed control loop and
asymptotic tracking of the stepwise reference signal. The parameters of this regulator can be derived
as:

2
Obvioudly, these coefficients are functions of the tuning parameter m>0. A potential way of its se-
lectionisoutlined in [5].
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5 AN ILLUSTRATIVE EXAMPLE

Suppose that controlled process is described by interval transfer function [6]:

12
s’ +[3,4]s* +[5, 6] s+[7; 8]

and the objectiveisto find al possible robustly stabilizing Pl controllers.

G(s) =

First, consider e.g.:

B.(s) _ 1
A(s) S’ +45°+5s+7

asthefirst of 16 Kharitonov plants. The equation (4) here takes the concrete form:

Gu(s) =

k, =4w®- 7
k =-w*+5w

(13)

(14)

(15

Using (5) and consequent stability test for two obtained intervals lead to the range of the frequency
wi (0;2.236) , which is necessary for computing/plotting the stability boundary locus. The analogi-

cal procedure has been done generally for al 16 Kharitonov plants. However, in this specific case,
the locus of only 8 systems is enough to investigate, because the nominator of (13) takes only two

extreme val ues and the construction of Kharitonov polynomials would be redundant here.

The Figure 1 provides the graphical representation of the stability boundary locus for 8 Khari-
tonov plants, while the Figure 2 brings closer look to the intersection, which constitutes final stability

region for the interval plant (13). An arbitrary pair of (ks,k ) from theinside of this stability region

would entail robustly stable control system.
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Fig. 1 Stability regions for 8 Kharitonov plants
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Fig. 2 Stability region for the interval plant (13)

Once the boundaries of robustly stabilizing Pl coefficients are obtained, quite natural question
emerges, which is how to find the practicaly suitable controller from this set. Here, the algebraic
approach from the Section 4 has been applied. For the sake of appropriate order of the final controller
(first order — PI type), the controlled system must be described in the form of first order plant. The
nominal system (for control design) has been obtained using the middle values of interval coefficients
in (13) and then via the very simple approximation, that is:

i 21.5 . 15 _ 0.27_ =G, (9) (16)
s°+35s"+555+75 b55s+75 s+1.36

For example, the tuning parameter m=0.7 givesthe controller parameters (12):

k,=0.1333 k =1.7967 (17)

The position of this controller in the stability region from Figure 2 is depicted in the following Figure
3. It lies on the curve which hypothetically connects the controllers tuned by various parameters m.

Finaly, the Figure 4 shows the control responses of the loop with this Pl controller and 2401 “repre-
sentative” systems from the interval family (13). Each interval parameter has been divided into 6 sub-
intervals and thus these 7 values and 4 parameters result in 7¢ = 2401 systems for simulation. More-
over, the red curve represents the output signal for the nominal system (16). Generaly, it has been
assumed the step reference signal changing from 1 to 2 in 1/3 of simulation time and the step load
disturbance -2 which influences the input to the controlled plant during the last third of simulation.
As can be seen, the controller (11) with parameters (17) really robustly stabilizes the interval plant
(13).
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Fig. 3 The position of controller (17) in stability region
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Fig. 4 The output signals of 2401 “representative” plants and the nominal system
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6 CONCLUSION
The contribution has presented a robust Pl controller design technique based on combination
of plotting the stability boundary locus for robust stabilization and the algebraic methodology for the
final choice of aregulator. The third order interval plant has been successfully controlled in the illu-
strative example.
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