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Abstract 
This paper deals with combined graphical-algebraic design of PI controllers which ensure 

robust stabilization of interval systems. The stability regions for parameters of these controllers are 
obtained via computing and plotting the stability boundary locus supplemented with the sixteen plant 
theorem and the final choice of the controller is based on an algebraic approach. A third order interval 
plant is robustly controlled in an illustrative example. 

Abstrakt 
Tento článek se zabývá kombinovaným graficko-algebraickým návrhem PI regulátorů, které 

zajišťují robustní stabilizaci intervalových soustav. Oblasti stability pro parametry těchto regulátorů 
jsou získány pomocí výpočtu a vykreslení umístění hranice stability, doplněné větou o šestnácti 
soustavách, přičemž finální volba regulátoru je založena na algebraickém přístupu. V rámci 
ilustrativního příkladu je robustně řízena intervalová soustava třetího řádu. 

 

 1 INTRODUCTION 
A mathematical model with interval uncertainty is a standard tool for description of real tech-

nological processes. This approach helps to incorporate the simplifications made during modelling, 
imprecise knowledge of plant parameters or its variability into the mathematical model and subse-
quently into the control synthesis itself. The designed controller should ensure some desired proper-
ties of the control loop for the whole interval plant family. The essential requirement of all users is 
the (robust) stability of the feedback control system. 

Despite existence of many modern control technologies, the present industrial practice still 
prefers the application of classical PI or PID compensators with fixed parameters [13], [14]. The rea-
son of this popularity is that PI(D) controllers are cheap, reliable, easily utilizable and usually suffi-
cient at the same time. Thus, an easy and effective way of PI/PID tuning is still very topical, especial-
ly in case that these algorithms are able to cope with various uncertain conditions comparably with 
other approaches [15], [16]. 

The main aim of this paper is to present a control design method for interval systems and to 
demonstrate its capabilities on an example for the third order interval plant. The computation of ro-
bustly stabilizing PI controllers with fixed parameters uses the stability boundary locus plotting in 
combination with the sixteen plant theorem, which is described in [10], [11]. Following choice of the 
final controller is based on general solutions of Diophantine equations in the ring of proper and Hur-
witz stable rational functions (RPS), Youla-Kučera parameterizations and conditions of divisibility in 
the specific ring. Besides, the selected controller can be further tuned through the only scalar tuning 
parameter 0m > . The main ideas of this technique are adopted from [4], [8], [12]. 
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 2 DETERMINATION OF STABILIZING PI CONTROLLERS 
A possible approach to calculation of stabilizing PI controllers based on plotting the stability 

boundary locus is proposed in [10], [11]. The method supposes the classical closed-loop control sys-
tem with the controlled plant: 

 ( )( )
( )

B sG s
A s

=  (1) 

and PI controller: 
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First, one needs to use the substitution s jω=  in the plant (1) and subsequently to decompose the 
numerator and denominator of this transfer function into their even and odd parts: 
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Then, the expression of closed-loop characteristic polynomial and setting the real and imaginary parts 
to zero lead to the equations: 
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Simultaneous solving of these relations and plotting the obtained values into the ( ),P Ik k  plane 

result in the stability boundary locus, which splits the ( ),P Ik k  plane up to the stable and unstable 
regions. The determination of the stabilizing one(s) can be done via a test point within each region. 
Furthermore, this technique can be embellished with the Nyquist plot based approach from [9] to 
avoid potential problems with proper frequency gridding. In this refinement, the frequency axis can 
be divided into several intervals by the real values of ω  which fulfil: 

 [ ]Im ( ) 0G s =  (5) 

Such intervals are then sufficient for testing. 

 3 IMPROVEMENT OF THE METHOD FOR INTERVAL PLANTS 
So far, the area of stabilizing controller coefficients for a given plant with only fixed parame-

ters can be computed. However, the paper [10] has improved the stabilization also for interval sys-
tems using the simple idea of its combination with the sixteen plant theorem [1], [2]. In compliance 
with this principle, a first order controller robustly stabilizes an interval plant 
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where , , ,i i i ib b a a− + − +  are lower and upper bounds for numerator and denominator parameters, respec-
tively, if and only if it stabilizes its 16 Kharitonov plants, which are defined as: 
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where { }1 2, 1,2,3,4i i ∈ ; and 1( )B s  to 4 ( )B s  and 1( )A s  to 4 ( )A s  are the Kharitonov polynomials for 
the numerator and denominator of the interval system (6), respectively. 

Remind that the Kharitonov polynomials e.g. for an interval polynomial: 
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can be constructed using the upper and lower bounds of interval parameters according to the rule [3]: 
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The stabilization of an interval plant is grounded in the stabilization of all 16 fixed Kharitonov plants 
together, and so the final stability region is given by intersection of all partial regions. 

 4 ALGEBRAIC DESIGN OF A CONTROLLER 
The methodology from the previous sections allows determining the (robustly) stabilizing 

combinations of proportional and integral gains in PI controller. However, the specific choice of the 
compensator itself is still an open question. A possible algebraic control design method is based on 
ideas developed in [4], [12]. It uses general solutions of Diophantine equations in RPS. Moreover, it 
supposes the utilization of the known Youla-Kučera parameterization, which allows generating infi-
nite amount of possible stabilizing controllers, while the choice of the final one depends on the de-
sired properties mathematically represented by conditions of divisibility in the specific ring. Anyway, 
the selected controller can be further tuned. One of advantages of this approach is that behavior of 
regulators can be influenced by the only scalar tuning parameter 0m > . Details of this method can be 
found for example in [5], [8]. 

From a set of developed results, this contribution takes advantage of the tuning rules for the 
first order plant: 

 0
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and feedback PI controller: 

 ( ) P Ik s kC s
s
+

=  (11) 

which ensures the bounded-input bounded-output (BIBO) stability of the closed control loop and 
asymptotic tracking of the stepwise reference signal. The parameters of this regulator can be derived 
as: 
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Obviously, these coefficients are functions of the tuning parameter 0m > . A potential way of its se-
lection is outlined in [5]. 
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 5 AN ILLUSTRATIVE EXAMPLE 
Suppose that controlled process is described by interval transfer function [6]: 

 [ ]
[ ] [ ] [ ]3 2
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( )
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s s s
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+ + +
 (13) 

and the objective is to find all possible robustly stabilizing PI controllers. 

First, consider e.g.: 
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as the first of 16 Kharitonov plants. The equation (4) here takes the concrete form: 
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Using (5) and consequent stability test for two obtained intervals lead to the range of the frequency 
( )0; 2.236ω ∈ , which is necessary for computing/plotting the stability boundary locus. The analogi-

cal procedure has been done generally for all 16 Kharitonov plants. However, in this specific case, 
the locus of only 8 systems is enough to investigate, because the nominator of (13) takes only two 
extreme values and the construction of Kharitonov polynomials would be redundant here. 

The Figure 1 provides the graphical representation of the stability boundary locus for 8 Khari-
tonov plants, while the Figure 2 brings closer look to the intersection, which constitutes final stability 
region for the interval plant (13). An arbitrary pair of ( ),P Ik k  from the inside of this stability region 
would entail robustly stable control system. 
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Fig. 1 Stability regions for 8 Kharitonov plants 
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Fig. 2 Stability region for the interval plant (13) 

 

Once the boundaries of robustly stabilizing PI coefficients are obtained, quite natural question 
emerges, which is how to find the practically suitable controller from this set. Here, the algebraic 
approach from the Section 4 has been applied. For the sake of appropriate order of the final controller 
(first order – PI type), the controlled system must be described in the form of first order plant. The 
nominal system (for control design) has been obtained using the middle values of interval coefficients 
in (13) and then via the very simple approximation, that is: 

 3 2

1.5 1.5 0.27 ( )
3.5 5.5 7.5 5.5 7.5 1.36 NG s

s s s s s
≈ = =

+ + + + +
 (16) 

For example, the tuning parameter 0.7m =  gives the controller parameters (12): 

 0.1333; 1.7967P Ik k= =  (17) 

The position of this controller in the stability region from Figure 2 is depicted in the following Figure 
3. It lies on the curve which hypothetically connects the controllers tuned by various parameters m. 

Finally, the Figure 4 shows the control responses of the loop with this PI controller and 2401 “repre-
sentative” systems from the interval family (13). Each interval parameter has been divided into 6 sub-
intervals and thus these 7 values and 4 parameters result in 47 2401=  systems for simulation. More-
over, the red curve represents the output signal for the nominal system (16). Generally, it has been 
assumed the step reference signal changing from 1 to 2 in 1/3 of simulation time and the step load 
disturbance -2 which influences the input to the controlled plant during the last third of simulation. 
As can be seen, the controller (11) with parameters (17) really robustly stabilizes the interval plant 
(13). 
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Fig. 3 The position of controller (17) in stability region 
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Fig. 4 The output signals of 2401 “representative” plants and the nominal system 
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 6 CONCLUSION 
The contribution has presented a robust PI controller design technique based on combination 

of plotting the stability boundary locus for robust stabilization and the algebraic methodology for the 
final choice of a regulator. The third order interval plant has been successfully controlled in the illu-
strative example. 
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