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Abstract 
A state variable feedback technique is usually used when controlled system dynamics is to be 

changed in a desired way. The results are very good provided that the linear state space representation 
used in the design is sufficiently valid in the whole operating range. In the paper, we present a case 
study of a tank cascade with changeable static and dynamic properties. When these changes are so 
significant that superior PI or PID controllers require resetting, it is advantageous to adapt the 
proportional state variable feedback. We assessed the impact of the feedback gain changes resulting 
from changes in the linear state model parameters used in the design of the gains.  

Abstrakt 
Stavová zpětná vazba je obvykle využívána k požadované změně dynamiky regulované 

soustavy. Výsledky bývají velmi dobré, pokud lineární stavová reprezentace má dostatečnou platnost 
v celém pracovním rozsahu. V příspěvku je prezentován případ kaskády nádrží, u níž dochází ke  
změnám statických i dynamických vlastností v závislosti na pracovním bodu. Jakmile jsou tyto 
změny natolik významné, že by vyžadovaly přestavení nadřazených PI nebo PID regulátorů, je 
výhodné provést přizpůsobení zesílení v použitých zpětných stavových vazbách. Byl vyhodnocován 
dopad změn zesílení ve zpětných vazbách vyplývající ze změn parametrů lineárního stavového 
modelu, který využíván k návrhu zesílení. 

 1 INTRODUCTION 
In the design of advanced control algorithms, tests of the functionality of the control system 

need to be carried out with the help of simulation models that provide a sufficiently true 
representation of reality. A frequently occurring fault that impedes the implementation of these 
algorithms into practical applications is the use of intuitively suggested changes in the model 
parameters. These are easy to simulate, but they do not in fact correspond to the real mutually 
interacting changes bounded by the validity of physical laws. This is one reason why realistic 
mathematical models of some real devices or processes designed as laboratory setups have been 
proved and they are preferred for use in advanced algorithm testing. They make possible a 
sufficiently precise mathematical description by means of physical laws whose mathematical 
formulation is sufficiently exactly fulfilled under real conditions. One example can be a cascade of 
two or more tanks. This is often found in labs as a physical model, and its main advantage is the 
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possibility to describe and quantify accumulation and flow processes relatively exactly with full 
respect to the valid physical laws providing a satisfactory measure of nonlinear properties. 

This paper demonstrates both the procedure for creating such a model and the exploitation of 
the modelling in the design of a control algorithm, in this case specifically focused on investigating 
the adaptable state variable feedback. Some of the computer aided techniques based on the MATLAB 
program package, including the Simulink and Symbolic toolboxes, are briefly outlined. 

 2 DESCRIPTION OF THE TANK CASCADE MODEL  
The cascade considered here consists of two mutually interconnected tanks. The first tank is 

supplied from a source which is idealized, assuming that delivery is independent from consumption. 
The second tank serves as an accumulator in further distribution characterized by variable 
consumption. The tanks can be interconnected with the pipeline either below or above the surface. In 
the mathematical model of the tank cascade this is taken into account by means of two binary 
variables s1 and s2. The level in the second tank is controlled by valve 1, placed in the inlet pipeline 
into the first tank, while valve 2 situated in the pipeline interconnecting the two tanks is beyond any 
manipulation. The random changes in the flow taken from the second tank are modelled by the 
changes in the opening of outlet valve 3. Models of the valves enable the user to define a level of 
nonlinearity in the opening characteristics by applying a special function using parameter v in 
conversion of a real stem stroke zi into an imaginary stroke ui. In the simulation model, the heights of 
the levels in tanks are generally not limited, and all the dimensions and physical constants are 
selected as if the tank cascade were a laboratory set-up and water was the liquid flowing through the 
cascade.  

 3 MATHEMATICAL MODEL  
The notation of the volume flow rate balance for each of the tanks leads to the equations: 
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where Fi (i = 1, 2) are the cross sections of the tanks, ki (i = 1, 2, 3) are the flow coefficients of the 
valves, the opening of which is measured by means of an imaginary stem stroke li(t) (i = 1, 2, 3), i.e. 
after the conversion from real strokes, and then the square root dependence on the valve pressure 
difference is expressed by means of the level heights hi(t) (i = 1, 2). Numerically, the flow coefficient 
indicates the value of the water flow rate assuming full valve opening and unit size of the difference 
in level heights. Variables s1 and s2 work like switches, and they indicate how the tanks are 
interconnected; e.g. if s1 = 1, the liquid is delivered into the first tank by a pipe issuing under a 
surface of level h1, if s1 = 0, the inflow is free (above the surface).The setting of the numerical 
parameter values is facilitated by using no dimensional expression by means of which absolute 
numerical values are converted into relative values. Doing this for the level heights, it is suitable to 
use as a reference value the imaginary level height in the source h0; for the valve stem strokes, their 
maximum value limax is used. The flow rates can be expressed as relative values of the maximum flow 
rate Qmax. Numerically, Qmax is equal to the flow rate through the first valve free to the atmosphere, if 
it is fully opened and connected to the source. The notation of the model equation (1) in non-
dimensional form is  
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It is obvious that while Qmax expresses the maximum flow capacity (measured in volume flow 
rate units) of a fully opened valve one connected to the source without any further connection to a 
tank, Qjmax denotes the flow capacities of valves two and three, assuming that they are separately 
connected to the source. Dividing Equation (2) and (3) by Qmax, time constants T1, T2 and non-
dimensional flow constants q2 a q3 (q1 = 1) can be introduced 

 32  ,  , 0 == jhlkQ jmaxjmaxj    21  ,  ,0 == i
Q

hFT
max

i
i  ,   32  ,  ,0 === j

Q
Q

Q
hlk

q
max

jmax

max

maxjj
j  (4) 

In non-dimensional notation, a nonlinear state model of a two-tank cascade is 
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 4 LINEAR STATE MODEL OF THE TANK CASCADE  
The steady state from which all experiments start and in which the linearization will be carried 

out is denoted in variables symbols by index 0. The steady state values of these variables are mutually 
linked by the equalities  
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Mathematically 
expressed mutual relations 
(6) and (7) can be depicted 
graphically (Figure 1). 

With help of the 
Symbolic Toolbox in the 
MATLAB program, partial 
derivation of the non-linear 
state space model (5) with 
respect to all variables can 
be obtained. This procedure 
can be seen from the results 
in Eq. (8) to (14), where new 
symbols for coefficients in 
the matrices of state formu-
lation have been simulta-
neously introduced. 
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Fig. 1 Steady state characteristics in the numeric example 
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The linear state space formulation in the deviations of variables is represented by the equations 
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 5 DESIGN OF PROPORTIONAL STATE FEEDBACK 
In order to modify the dynamics of the tank cascade control, to the manipulated variable 

Δz1R(t) generated by a superior PI controller further changes Δz1S(t) proportional to the state variable 
changes Δx1(t), Δx2(t) are added:  
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After substituting (15) in (14) we get a new state formulation  

 ( ) )()()()()(
)(
)(

)( tzttzt
B

tx
tx

AA
AA

t
RR

TT
11

11

2

1

2221

1211

0
ΔΔΔΔ

Δ
Δ

Δ BxBKAxKx +−=+−⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=&  (16) 

(the influence of disturbance manipulation with Δz3(t) is not reflected) whose characteristic 
polynomial can be influenced by the matrix K of the gains in the state feedback. There are several 
options in defining them, but, in principle, quicker dynamics of the controlled system makes control 
by the superior controller easier and quicker. The quickest but still non-oscillating dynamics is 
achieved when the characteristic polynomial has multiple roots. In the case of a polynomial of the 
second degree, only one parameter must then be defined. This is time constant τ . The equality of the 
two polynomials is expressed by the formula  

 [ ] 22 12 ττ ++=−− sss TBKAIdet  (17) 

A search for the values of gains k1, k2 representing elements of the matrix (vector) KT was 
carried out with support from the Symbolic toolbox. The toolbox offers a function poly that creates 
characteristic polynomials to matrices. Using notation similar to standard symbolic declarations, the 
whole procedure can be described as follows 

Initial assignments: Characteristic polynomials: 
aa =sym('[A11 A12;A21 A22]')=[ A11, A12] 
 [ A21, A22] 
K = [ k1, k2] 
bb=sym('[B11;0]')= B11 
 0 

• designed 
d =poly(aa-bb*K,'s')= 
s^2-(A11+A22)*s+B11*k1*s- 
B11*A22*k1+B11*A21*k2+A11*A22-A12*A21 

• desired 
d_ =poly2sym([1 2/tau 1/tau^2],'s')= 
s^2+2*s/tau+1/tau^2 
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Comparison of coefficients at the same powers of s in polynomials d and d_ leads to the notation 
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Solution of Eq. (18): 
ab=sym('[B11,0;-B11*A22,-B11*A21]')= [B11, 0] 
  [-B11*A22, B11*A21] 
ttau=sym('[2/tau;1/tau^2]')= 2/tau 

 1/tau^2 
aa12 =sym('[-A11-A22;A11*A22-A21*A12]')= -A11-A22; 
                              A11*A12-A12*A21 
k=inv(ab)*(ttau-aa12)= 1/B11*(2/tau+A11+A22) 
  1/B11/A21*(1/tau^2+A12*A21-A11*A22)+1/B11*A22/A21*(2/tau+A11+A22) 

 6 EXPERIMENTS WITH GAINS ADAPTABILITY AND KEEPING FIXED PI 
CONTROLLER SETTING 

 

Fig. 2 Model of tank cascade control in Simulink, including auxiliary linear state model 
The simulation model in Figure 2 consists of several parts. The two masked blocks in the 

middle perform computation of flows in the flow balance of each of the tanks. For comparison 
purposes, the block scheme contains a linear state model whose coefficients have been derived by 
linearization in the starting steady-state operating point. The state model shares all the input changes 
applied in the non-linear model and uses the same controller setting both for the gains blocks in the 
state feedback and the PI controller. The integral time constant of the PI controller is set to an 
optional time constant τ. With this setting, the controller cancels one of the double poles in the 
linearized model of the cascade whose dynamics was changed by the state feedback to achieve these 
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Fig. 3 Dependence of control responses on the state feedback gains according to the point of 
linearization that is used – in both cases the setting of the superior PI controller is the same properties 
designedly. The look-up table blocks are filled by data as a part of the initial operations performed by 
means of callbacks within the Simulink model properties definition. 

Figure 3 demonstrates some impacts on the control results caused by the nonlinear properties 
of a real object. In the figure on the left, the solid and dotted black lines conform to a control process 
with values of the state feedback gains calculated for the initial steady state. The grey solid and dotted 
lines show the process with values of the state feedback parameters evaluated in the final steady state. 
On the right, the plot compares the course of changes in valve opening for both settings of the state 
feedback gains. By these plots suitability of on-line adaptation of the gains can be confirmed.  

 7 CONCLUSION 
Results obtained till now have confirmed the importance of adaptability of state feedback 

gains, if the feedback is applied to a real device, in order to accelerate its dynamic behaviour and in 
such a way make the control task for the superior controller easier. If the nonlinear properties cannot 
be neglected, designing the state variable feedback on the basis of linear theory will cause significant 
problems when used without a mechanism that reflects the parameter changes linked with a change in 
operating point. 
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