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SUITABILITY OF ADAPTABLE STATE FEEDBACK FOR KEEPING PRESCRIBED
CONTROL QUALITY UNDER CHANGING OPERATION CONDITIONS

VHODNOST ADAPTABILNI STAVOVE ZPETNE VAZBY PRO UDRZENI’ PREDEPSANE
KVALITY REGULACE ZA PROMENNYCH PROVOZNICH PODMINEK

Abstract

A state variable feedback technique is usually used when controlled system dynamics is to be
changed in a desired way. The results are very good provided that the linear state space representation
used in the design is sufficiently valid in the whole operating range. In the paper, we present a case
study of a tank cascade with changeable static and dynamic properties. When these changes are so
significant that superior PI or PID controllers require resetting, it is advantageous to adapt the
proportional state variable feedback. We assessed the impact of the feedback gain changes resulting
from changes in the linear state model parameters used in the design of the gains.

Abstrakt

Stavova zpétna vazba je obvykle vyuzivana k pozadované zméné dynamiky regulované
soustavy. Vysledky byvaji velmi dobré, pokud linearni stavova reprezentace ma dostate¢nou platnost
v celém pracovnim rozsahu. V piispévku je prezentovan piipad kaskady nadrzi, u niz dochazi ke
zménam statickych i dynamickych vlastnosti v zavislosti na pracovnim bodu. Jakmile jsou tyto
zmény natolik vyznamné, Ze by vyzadovaly pfestaveni nadrazenych PI nebo PID regulatord, je
vyhodné provést pfizplisobeni zesileni v pouzitych zpétnych stavovych vazbach. Byl vyhodnocovan
dopad zmén zesileni ve zpétnych vazbach vyplyvajici ze zmén parametrti linearniho stavového
modelu, ktery vyuzivan k navrhu zesileni.

1 INTRODUCTION

In the design of advanced control algorithms, tests of the functionality of the control system
need to be carried out with the help of simulation models that provide a sufficiently true
representation of reality. A frequently occurring fault that impedes the implementation of these
algorithms into practical applications is the use of intuitively suggested changes in the model
parameters. These are easy to simulate, but they do not in fact correspond to the real mutually
interacting changes bounded by the validity of physical laws. This is one reason why realistic
mathematical models of some real devices or processes designed as laboratory setups have been
proved and they are preferred for use in advanced algorithm testing. They make possible a
sufficiently precise mathematical description by means of physical laws whose mathematical
formulation is sufficiently exactly fulfilled under real conditions. One example can be a cascade of
two or more tanks. This is often found in labs as a physical model, and its main advantage is the
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possibility to describe and quantify accumulation and flow processes relatively exactly with full
respect to the valid physical laws providing a satisfactory measure of nonlinear properties.

This paper demonstrates both the procedure for creating such a model and the exploitation of
the modelling in the design of a control algorithm, in this case specifically focused on investigating
the adaptable state variable feedback. Some of the computer aided techniques based on the MATLAB
program package, including the Simulink and Symbolic toolboxes, are briefly outlined.

2 DESCRIPTION OF THE TANK CASCADE MODEL

The cascade considered here consists of two mutually interconnected tanks. The first tank is
supplied from a source which is idealized, assuming that delivery is independent from consumption.
The second tank serves as an accumulator in further distribution characterized by wvariable
consumption. The tanks can be interconnected with the pipeline either below or above the surface. In
the mathematical model of the tank cascade this is taken into account by means of two binary
variables s; and s,. The level in the second tank is controlled by valve 1, placed in the inlet pipeline
into the first tank, while valve 2 situated in the pipeline interconnecting the two tanks is beyond any
manipulation. The random changes in the flow taken from the second tank are modelled by the
changes in the opening of outlet valve 3. Models of the valves enable the user to define a level of
nonlinearity in the opening characteristics by applying a special function using parameter v in
conversion of a real stem stroke z; into an imaginary stroke u;. In the simulation model, the heights of
the levels in tanks are generally not limited, and all the dimensions and physical constants are
selected as if the tank cascade were a laboratory set-up and water was the liquid flowing through the
cascade.

3 MATHEMATICAL MODEL

The notation of the volume flow rate balance for each of the tanks leads to the equations:

Fhy(t) = kil (O hy — 5,1, (0) =y (0O Iy (2) = 5,1, (2)
Fyhy (1) = kL, (O I (1) = 5,0, (1) = Kol (03 o (1)

where F; (i = 1, 2) are the cross sections of the tanks, k; (i = 1, 2, 3) are the flow coefficients of the
valves, the opening of which is measured by means of an imaginary stem stroke /(¢) (i = 1, 2, 3), i.e.
after the conversion from real strokes, and then the square root dependence on the valve pressure
difference is expressed by means of the level heights 4,(f) (i = 1, 2). Numerically, the flow coefficient
indicates the value of the water flow rate assuming full valve opening and unit size of the difference
in level heights. Variables s; and s, work like switches, and they indicate how the tanks are
interconnected; e.g. if s; = 1, the liquid is delivered into the first tank by a pipe issuing under a
surface of level /4y, if s; = 0, the inflow is free (above the surface).The setting of the numerical
parameter values is facilitated by using no dimensional expression by means of which absolute
numerical values are converted into relative values. Doing this for the level heights, it is suitable to
use as a reference value the imaginary level height in the source /¢; for the valve stem strokes, their
maximum value /;,,, is used. The flow rates can be expressed as relative values of the maximum flow
rate Q.- Numerically, O, 1s equal to the flow rate through the first valve free to the atmosphere, if
it is fully opened and connected to the source. The notation of the model equation (1) in non-
dimensional form is

)

Fhyx, (1) = Oty ()41 =5, (1) —kzlzm\/a Uy ()4 X, () = 5,x, () 2)
Fyhyiy (6) = kol Aoty (6033, (1) = 53, (0) = el Aot (0335, (0) 3)
where 0,,,. = kT + x,() =2 (t) L i=1,2, u,(0) = ( ) o123
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It is obvious that while Q,,,, expresses the maximum flow capacity (measured in volume flow
rate units) of a fully opened valve one connected to the source without any further connection to a
tank, Q... denotes the flow capacities of valves two and three, assuming that they are separately
connected to the source. Dividing Equation (2) and (3) by O, time constants 73, 7, and non-
dimensional flow constants ¢, a ¢; (¢; = 1) can be introduced

. k.l h i
Qjmax :kjljmax\/gﬁ j:2’3 7: :gl_ho’ i:1,2 , qj —_J _gax'\/_o — QQ/n1m‘c , J:2,3 (4)

In non-dimensional notation, a nonlinear state model of a two-tank cascade is

50 = (01500 — (0% O =500 |

520 = (05 0 =550 - i, O 0 5)

2

(1) =x,(0)

4 LINEAR STATE MODEL OF THE TANK CASCADE

The steady state from which all experiments start and in which the linearization will be carried
out is denoted in variables symbols by index 0. The steady state values of these variables are mutually

linked by the equalities
U, \ll THX, T Gols ([ X, TSXs T q3Uz [ X = 4o (6)

2,2 02 442l a? 2.2 2

v = Syl Uy Gy T Uy Uz G5 o = Uy 9, %
I, — 2.2 2 2 2.2 2 2.2 2 2 — 2.2 2 2 2.2 2 2.2 2

Sy Uy g3 + Uy qrUs Gy S8, Uy g, Sy U g3 + Uy ol Gy S8, Uy g,

Mathematically
expressed mutual relations
(6) and (7) can be depicted
graphically (Figure 1).

With help of the
Symbolic Toolbox in the
MATLAB program, partial
derivation of the non-linear
state space model (5) with
respect to all variables can
xL.u3=05 be obtained. This procedure
—o— x1.u3=04 can be seen from the results
| |—#—x1.u3=03 in Eq. (8) to (14), where new
| TE2B203 1 gymbols for coefficients in
—— x2.u3=04 .
Stem stroke of inlet valve B the matrices of state formu-

x2.u3=05 . .
lation have been simulta-
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Fig. 1 Steady state characteristics in the numeric example neously introduced.
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q2u20 — qo _ i
ZTz\/xlo = 8%, 2T2(x10 _Szxzﬂ) T,

21 —

a, (10)

qrU; 1 gsi; q 1 g 1
A =T o o — _ 0 5, ———L=——(a,s, +a,) (11)
2 2T, \[x;, = $,%,, T2 X, 2T, (x,, = 5,%,)) T 2x;, T,

(1 tanh?((z, 0 Sy yI=sm, (12)

11—

2 tanh(0,5v) 2T,
. (1 tanh ((z3 -0 5)V))V %M b, (13)
2 tanh(0,5v) 27,

The linear state space formulation in the deviations of variables is represented by the equations

4,0 [4, A, [an0] [B, 0 T450) "
. = + Ap(r) =10 1{ ! } (14)
Ax2(t) 4, 4, Ax2(t) 0 By, Az(t) Ax, (1)

5 DESIGN OF PROPORTIONAL STATE FEEDBACK

In order to modify the dynamics of the tank cascade control, to the manipulated variable
Azr(¢) generated by a superior PI controller further changes A4z5(f) proportional to the state variable
changes 4x,(t), 4x,(f) are added:

4z, =—K"Ax(1) (15)

After substituting (15) in (14) we get a new state formulation

ax(y=| A1 B ( K7 Ax(0)+ 4, (1)) = (A-BK)AX()+ Bz, (1) (16)
ty ) A g

(the influence of disturbance manipulation with Az;(f) is not reflected) whose characteristic
polynomial can be influenced by the matrix K of the gains in the state feedback. There are several
options in defining them, but, in principle, quicker dynamics of the controlled system makes control
by the superior controller easier and quicker. The quickest but still non-oscillating dynamics is
achieved when the characteristic polynomial has multiple roots. In the case of a polynomial of the
second degree, only one parameter must then be defined. This is time constant 7. The equality of the
two polynomials is expressed by the formula

detfsl - A—BK"|=s? +25/7+1/7 (17)

A search for the values of gains ki, k, representing elements of the matrix (vector) K' was
carried out with support from the Symbolic toolbox. The toolbox offers a function poly that creates
characteristic polynomials to matrices. Using notation similar to standard symbolic declarations, the
whole procedure can be described as follows

Initial assignments: Characteristic polynomials:
aa =sym('[A11 A12;A21 A22])=[ A11, A12] e designed
[A21, A22] d =poly(aa-bb*K,'s")=
K=[k1, k2] s"2-(A11+A22)*s+B11*k1*s-
bb=sym('[B11;0]')= B11 B11*A22*k1+B11*A21*k2+A11*A22-A12*A21
0 e desired
d_=poly2sym([1 2/tau 1/tau™2],'s")=
SM2+2*s/tau+1/tau2
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Comparison of coefficients at the same powers of s in polynomials d and d_ leads to the notation

|: ) :||: | :| |: / :| |: ) :| ( )
114722 11721 2 1/‘ 114722 124721

ab=sym('[B11,0;-B11*A22,-B11*A21])=[B11, (]
[-B11*A22, B11*A21]
ttau=sym('[2/tau;1/tau"2]')= 2/tau
1/tau”2
aal2 =sym([-A11-A22;A11*A22-A21*A12]")= -A11-A22;
Al1*A12-A12*A21
k=inv(ab)*(ttau-aal2)= 1/B11*(2/tau+A11+A22)
1/B11/A21*(1tau2+A12*A21-A11*A22)+1/B11*A22/A21*(2/ltau+A11+A22)

6 EXPERIMENTS WITH GAINS ADAPTABILITY AND KEEPING FIXED PI
CONTROLLER SETTING
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Fig. 2 Model of tank cascade control in Simulink, including auxiliary linear state model

The simulation model in Figure 2 consists of several parts. The two masked blocks in the
middle perform computation of flows in the flow balance of each of the tanks. For comparison
purposes, the block scheme contains a linear state model whose coefficients have been derived by
linearization in the starting steady-state operating point. The state model shares all the input changes
applied in the non-linear model and uses the same controller setting both for the gains blocks in the
state feedback and the PI controller. The integral time constant of the PI controller is set to an
optional time constant 7. With this setting, the controller cancels one of the double poles in the
linearized model of the cascade whose dynamics was changed by the state feedback to achieve these
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Fig. 3 Dependence of control responses on the state feedback gains according to the point of
linearization that is used — in both cases the setting of the superior PI controller is the same properties
designedly. The look-up table blocks are filled by data as a part of the initial operations performed by
means of callbacks within the Simulink model properties definition.

Figure 3 demonstrates some impacts on the control results caused by the nonlinear properties
of a real object. In the figure on the left, the solid and dotted black lines conform to a control process
with values of the state feedback gains calculated for the initial steady state. The grey solid and dotted
lines show the process with values of the state feedback parameters evaluated in the final steady state.
On the right, the plot compares the course of changes in valve opening for both settings of the state
feedback gains. By these plots suitability of on-line adaptation of the gains can be confirmed.

7 CONCLUSION

Results obtained till now have confirmed the importance of adaptability of state feedback
gains, if the feedback is applied to a real device, in order to accelerate its dynamic behaviour and in
such a way make the control task for the superior controller easier. If the nonlinear properties cannot
be neglected, designing the state variable feedback on the basis of linear theory will cause significant
problems when used without a mechanism that reflects the parameter changes linked with a change in
operating point.
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