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Abstract 
The paper describes the physical and cybernetic approach to the task of looking for an 

appropriate mathematical approximation-regression model of the measured standardised 
concentration of the tracer at a scale physical model of the casting ladle when blowing the steel by 
inert gas. The physical approach allows assembling an adequate mathematical model of the processes 
in the shape of a so-called white box, where the structure of the model are known. The cybernetic 
approach only draws on the measured inputs and outputs (so-called black box) as well as any 
additional conditions (so-called grey box) and the structure of the model is chosen according to them. 
These mathematical models are referred to as empirical models. The paper presents and compares 
four mathematical models – physically adequate one and three empirical ones. 

Abstrakt 
Příspěvek popisuje fyzikální a kybernetický přístup k hledání vhodného matematického 

aproximačně-regresního modelu normované naměřené koncentrace stopovací látky ve zmenšeném 
fyzikálním modelu licí pánve při prodmýchávání oceli inertním plynem. Fyzikální přístup umožňuje 
sestavit adekvátní matematický model děje ve tvaru tzv. bílé skřínky, kde je známá struktura modelu. 
Kybernetický přístup vychází pouze z naměřených vstupů a výstupů (tzv. černá skřínka), případně i z 
doplňkových podmínek (tzv. šedá skřínka) a strukturu modelu podle nich volí. Těmto matematickým 
modelům se říká empirické modely. V příspěvku jsou prezentovány a porovnány čtyři matematické 
modely – jeden fyzikálně adekvátní a tři empirické. 

 1 INTRODUCTION 
For the measured time path of tracer concentrations in the physical model of the ladle (L) at 

blowing of steel by inert gas (argon) it was appropriate to construct physical-mathematical 
(physically adequate) and empirical models. Four developed models were verified with use of 
parametric simulation identification and non-linear regression analysis and their outputs were 
compared. 

Results of these analyses can be used for setting of suitable mode of operation for blowing, as 
well as for teaching at technical universities. 

 2 DESCRIPTION OF SITUATION 
Schematic illustration at blowing of steel (water) by inert gas (argon) in the model of the ladle 

(hereinafter mL, which was created on a geometric scale 1:10) is shown in Fig. 1: 
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Fig. 1 Blowing of argon into the ladle model 

Into the vessel of the mL three conductive sensors are inserted - K1, K2 and K3. Bubbles of 
inert gas (argon) with constant volume flow q are flowing from the blowing element P (blowing 
block) situated eccentrically at the bottom of the mL. They „erode“ the layer of coloured water 
enriched in concentration with the height (thickness) hk and there occurs gradual progressive stirring 
up of enriched and clear liquid (steel, water). Two (pressure) forces II and I work basically against 
each other on molecules of water in proximity of the sensors. 

 3 MEASURED DATA 
Analysis and synthesis of mathematical models was made on the basis of the experiment 

realised on May 2006, where the development of the measured concentrations ci(t), i ∈ {1,2,3}, (with 
sampling period ∆t ≈ 0.5 s), in the sensors K1, K2 and K3 had the following shape – see Fig. 2: 
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Fig. 2 Development of concentration in the sensors K1, K2 and K3 

Several facts are obvious from the development of concentration in the sensors: start and 
progress of blowing of steel by gas can be approximately considered in the form of the Heaviside unit 
step function and it is therefore possible to consider the development of concentration as transient 
characteristics. The sensors reacted only after elapsing of certain “dead time”, which is proportional 
to the distance of individual sensors from the liquid level in the mL. The overshoot of courses 
(apparently proportional to the difference of the forces I and II) also descends with the distance from 
the liquid level in the mL. 

As it can be seen from the Fig. 2, the initial concentration is not zero, but it corresponds to 
residual (natural) conductibility of the model liquid (water). For this reason, but also for the needs of 
comparison of courses in all the sensors, it is appropriate to introduce standardised (and 
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dimensionless) concentration according to the following relation: 
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where: 

t – time [ , ]s

c(t) – measured concentration [ ]%weight , 

cp – initial value of concentration [ ]%weight , 

cu – stable (final) value of concentration [ ]%weight . 

It is obvious from the relation (1), that initial value of the standardised concentration will be 
zero and final (stable) value will be equal to one. 

 4 PHYSICAL – MATHEMATICAL MODEL 
On the basis of the scheme of the mL and development of concentrations there was developed 

simple (based on the principle of the so called Occam’s razor: “entia non sunt multiplicanda praeter 
necessitatem” = “models should not be more complex than it is absolutely necessary“) physical-
mathematical model of behaviour of steel concentration in the ladle during its blowing in the form of 
cybernetic model, expressed with use of block diagram in Fig. 3: 
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Fig. 3 Block diagram of the ladle model 

(the model is valid for any sensor, Q(s) is Laplace (L-) image function of gas flow, C(s) is L-image of 
concentration). Transition of transport (time) delay has the following form: 

 , (2) ][)exp()( −=⋅−= ⋅− sT
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where: 

Td – transport delay [s], 

s – complex variable in L-transform [1/s]. 

For the part of the model without time delay we therefore presume two parallelly and 
antagonistically connected first-order proportional systems (with transfers GI and GII), which are 
used also in (chemical) kinetics of processes (in this case, however, in equivalent form of ordinary 
differential equations of the 1st order with constant coefficients): 
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where: 
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k1, k2  – transfer coefficients of the systems ⎥⎦
⎤

⎢⎣
⎡ ⋅

3m
s% , 

T1, T2 – time constants of the systems [s]. 

On the basis of analogy with the so called subtractional thermocouple [VÍTEČEK, SMUTNÝ & 
KUSYN 1988] and on the basis of time behaviour of the measured concentrations (see Fig. 2) there 
can be assumed a significant (of an order) difference in the time constant values, i.e. T2 >> T1 (that is 
the descending part of the transient characteristics has considerably bigger time constant than the 
ascending part), and generally also unequal values of the transfer coefficients k1 ≠ k2. 

For this part of the model it is then possible to construct on the basis of algebra of transfers the 
following continuous L-transfers (for zero initial conditions): 
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from which for the L-image function and original function (obtained by inverse L-transform) transfer 
function H(s) and h(t) (response to the Heaviside unit step function of inert gas flow, Q(s) = 1/s), as 
well as for its limit values we get the following: 
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Due to the fact that the stable value of the standardised concentration is equal to one, the 
following relation is valid for the value of the transfer coefficient k2 (k2 < k1): 

 11)( 1221 −=⇒=−=+∞ kkkkh . (9) 

By insertion of this relation into the relation (7) we get the final expression for the transient 
function of the standardised concentration, which can be simultaneously used also as non-linear 
regression model with three parameters k1, T1 and T2: 

 )/exp()1()/exp(1)()( 2111 TtkTtktcth n −⋅−+−⋅−== . (F1) 

To make the image complete let us construct for the L-transform of this part of the system, 
when after insertion of the obtained relations into the relation (5), we get the following: 
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from which it is evident that this is a modification of the so-called real derivative element with lag of 
the 2nd order, whereas the derivation time constant TD is function of all three parameters. This transfer 
(and thus also behaviour of the model) corresponds even better to the transfer of the real PD 
regulator, but with mutually different real poles (classical real PD regulator has two conjugate 
complex poles) – see [KUBÍK et al. 1974]. 

The model F1 can be obtained also by another way, by logical thinking. It is possible to 
construct the curves of similar type from exponentials or to use equations of chemical kinetics. The 
simplest way is summation of two exponentials (ascending and descending) and the constant: 
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which leads at conditions c(0) = 0, c(∞) = 1 and after formal assignment of b1 = a1,  
b2 = a2, b3 = a4, to the regression equation (F1m), corresponding to the model F1, whereas the 
following equivalence is valid for its coefficients b1 = k1, b2 = 1/T1 [1/s], b3 = 1/T2 [1/s]: 

 )exp()1()exp(1)( 3121 tbbtbbtcn −⋅−+−⋅−= . (F1m) 

Coefficients b2 and b3 have at the same time in this equation a character of kind of velocity or 
frequency constants of mixing process. 

 5 SIMULATION MODEL AND ITS IDENTIFICATION 
Simulation identification of the part of the model with transfer G(s) was realised in the 

simulation software 20-sim 2.3 Pro (shareware, University of Twente, The Netherlands, 1998, 
www.20sim.com) [ZÍTEK & PETROVÁ 1996], according to the diagram – see Fig. 4: 
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Fig. 4 Simulation diagram in the program 20-sim 
Identification of a continuous mL was realised for the following settings of the simulation 

parameters: initial setting k1 = 5, T1 = 5 s, T2 = 50 s, optimisation method Broydon-Fletcher-Goldfarb-
Shanno, tolerance = 0.01, integration method RK4, integration step h = 0.5 s, final time of simulation 
tf = 160.5 s, ranges (limits of values) of parameters: k1 ∈ <1, 10>, T1, T2 ∈ <1, 100>. 

Results of simulation parametric identification (with use of optimisation criterion ISE = 
Integral of Squared Error) from the simulation program 20-sim 2.3 Pro for the data set LP_K1n.dat, 
i.e. data of standardised concentration cn1(t) in the 1st sensor K1, are summarised in the Tab. 1: 

Tab. 1 Results of simulation parametric identification for the data LP_K1n 

k1 T1 T2 ISE Note 

6.25 3.24 26.6 8.75 Integration step h = ∆t = 0.5 s 

Fig. 5 shows courses of the values y (model output) and ys (output form the system, i.e. 
measured and standardised data) for concentration from the sensor K1: 
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Fig. 5 Courses of the values in the program 20-sim (for data LP_K1n.dat) 
It is evident from the Fig. 5, that simulation identification provided acceptable results – 

regression course of the output from the approximation system (model) corresponds quite well with 
the measured values of the standardised concentration. 

Similarly acceptable results were obtained by simulation identification also for the 
concentrations measured in the sensors K2 and K3. 

 6 EMPIRICAL MATHEMATICAL MODELS 
Apart from the obtained physically adequate mathematic (and corresponding regression) 

model F1, or modified model F1m, there were developed also three empirical models (called also 
empirical formulas, functions or relations) – types and principles of their selection are described e.g. 
in [BRONŠTEJN & SEMENĎAJEV 1964], [PECHOČ 1981], [KROPÁČ 1987]. 

The difference between both types of models consists in the fact, that physically adequate 
model (called also theoretical, deterministic or phenomenological model) corresponds (although often 
in a simplified manner) to physical laws; its parameters have physical meaning and can be therefore 
used also for extrapolation of the measured values. 

Empirical mathematical (regression) models generally do not have these properties and „try“ 
only to express in the best possible way the courses (trends) in data, whereas their use is correct only 
for interpolation of the values (within the interval of independent variable). 

Empirical models, fulfilling the marginal conditions cn(t = 0) = 0, cn(t → +∞) = 1, for the 
standardised concentrations have the following form: 
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Both empirical functions have the form of rational polynomial (ratio of power functions), 
whereas the model E1 has 4 parameters and model E2 even 5 parameters. 

Another possibility is an empirical model constructed as summation of two functions: Hoerl’ 
function (f1) and suitable multiple of the function arc tangent (f2), whereas the following is valid for 
their marginal values: f1(0) = f2(0) = 0, f1(∞) = 0, f2(∞) = 1: 
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The mentioned empirical mathematical models can be characterised (from cybernetic 
viewpoint) as so called grey boxes, i.e. there were known not only inputs and outputs, but also 
additional conditions [KROPÁČ 1987] in the form of the marginal conditions referred to above. 

 7 COMPARISON OF MODELS 
For the data LP_K1n.dat of standardised concentration measured in the sensor K1, there were 

compared the results obtained for four models, namely: with use of the above mentioned simulation 
identification (only in physically adequate model, hereinafter marked as F1s), and also with use of 
non-linear regression (on all four model). 

The results are summarised in the Tab. 2 (where criterion SSE = Sum of Squared Error) - and 
for non-linear regression also in the Fig. 6: 
Tab. 2 Results of identification and non-linear regression for data LP_K1n 

Model k1, b1 T1, b2 T2, b3 b4 b5 ISE, SSE R2 Note 

F1s 6.247 3.237 26.598 - - 8.75 - h = 0.5 s 

F1 6.238 3.214 26.633 - - 19.33 94.12 3 parameters 

E1 0.252 0.416 0.000057 2.751 - 22.15 93.26 4 –„– 

E2 3.058 -0.023 0.00062 0.578 -0.0041 18.42 94.40 5 –„– 

E3 1.743 0.512 0.0558 0.605 - 17.92 94.55 4 –„– 
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Fig. 6 Comparison of the models for the data  Fig. 7 Courses of regression of the model F1 for  
LP_K1n.dat the data from all three sensors 

It is obvious from the comparison that simulation identification and non-linear regression give 
for physically adequate model F1 practically the same results (which could have been expected due 
to similar optimality criterion). The models are qualitatively comparable (with respect to the 
„integral“ quality of approximation, expressed by the indicators R2 and SSE), but the best is the 
model F1, which is physically adequate, has the smallest number of parameters and at ascending part 
it provides adequate growth of the values (empirical model E1 has here a too steep growth). 

 8 REGRESSION MODEL IN ALL CONCENTRATIONS 
The Tab. 3 and the next Fig. 7 show visible use of the model F1 for standardised values of 

concentration in all three sensors (without considered time delay): 
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Tab. 3 Results of non-linear regression for the model F1 

Sensor  
k1

[%⋅s/m3] 

T1

[s] 

T2

[s] 

R2

[%] 
Note 

K1 6.2 3.2 26.6 94.12  

K2 1.4 2.9 45.1 74.98 min. R2

K3 1.1 5.7 46.5 96.62 max. R2

It is evident from the results that the model F1 is suitable and usable for description of the 
development of concentration in all three sensors. It is also obvious that the transfer coefficient (gain 
coefficient) k1 decreases with the distance of the sensor from the liquid level in the mL, while the time 
constant T2 increases in this dependence. 

 9 CONCLUSIONS 
For the description of measured concentrations changes of the bath elements in the ladle 

model at argon blowing there were developed and verified four mathematical (regression) models, 
namely one physically adequate and three empirical. 

Out of these models the most suitable and at the same time the most simple (which 
corresponds to the principle of the so called Occam’s razor: „the simplest is usually correct or at least 
suitable“) was the physically adequate model, which can be (and also was) used for the next analysis 
of influence of simulation input parameters on coefficients of this model, both for setting of suitable 
(optimum) mode of operation at blowing of steel in the ladle. 

Didactical usability of the contents of this paper is also not negligible, as it can be used for 
teaching at (not only technical) universities. 

The paper was prepared while addressing the grant project no. 106/07/0407 with a financial support 
of the Grant Agency of the Czech Republic. 
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