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Abstract 
The positional deviation (difference between the actual and target position) belongs to the 

important criteria that describe the performance of numerically controlled axes. The procedure for 
determination of such deviation is described in the international standard ISO 230-2:1997. This 
standard provides calculation of the positional deviation only in several discrete (measuring) points. 
Moreover it does not consider effects of the measuring instrument on the obtained results. The new 
methodology is adopted and it is enables estimation of the positional deviation in any point of the 
axis travel, together with the uncertainty of such estimate. Obtained results can be incorporated into a 
control system in the form of corrections enhancing positioning possibilities of individual axes.  

The paper introduces procedures that were verified by measurements for one linear axis. The 
more complicated situation occurs for testing the positioning accuracy in a plane or in a space 
respectively. Therefore possible solutions for determination the repeated positioning accuracy in any 
point of the plane are presented at the end of the paper, together with expression of the respective 
uncertainty. 

Abstrakt 
Odchýlka polohovania (rozdiel medzi skutočnou a požadovanou polohou) patria medzi 

významné kritéria opisujúce činnosť počítačovo riadených osí strojov. Postup na určenie takejto 
odchýlky sa uvádza v medzinárodnej norme ISO 230-2:1997. Táto norma poskytuje návod na 
výpočet odchýlky polohovania iba v niekoľkých diskrétnych bodoch (bodoch merania). Okrem toho 
neuvažuje vplyv meracieho zariadenia na získané výsledky. Preto sa navrhuje nová metodika, ktorá 
umožňuje odhad odchýlky polohovania v ľubovoľnom bode na osi, spolu s neistotou takéhoto 
odhadu. Získané výsledky sa dajú zahrnúť do riadiaceho systému vo forme korekcií umožňujúcich 
zlepšenie schopnosti polohovania jednotlivých osí. 

V článku sa uvádzajú postupy, ktoré boli meraniami overené pre jednu lineárnu os. Zložitejšia 
situácia platí pri testovaní presnosti polohovania v rovine, resp. v priestore. Preto sú na záver uvedené 
úvahy o možných postupoch pri vyjadrení opakovanej polohovateľnosti aj s neistotami v 
ľubovoľnom bode roviny. 

 1 INTRODUCTION 
Testing of the positional deviation of the numerically controlled axis (either rotary or 

longitudinal) is ruled by the international standard ISO 230-2:1997 [1]. This standard provides guide 
for design of the test, testing conditions and also evaluation procedure for processing the measured 
data. In general, the testing procedure is based on repeated measurements of the actual position of the 
tested axis in several discrete points (target positions), located equally along the axis travel. 
 

Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak 
University of Technology in Bratislava, Nám. slobody 17, Bratislava, Slovak republic, tel. (+421) 2 572 94 563, 
e-mail *martin.halaj@stuba.sk, **eva.kurekova@stuba.sk, ***rudolf.palencar@stuba.sk, ****tomas.loebl@stuba.sk 

7 



 The several parameters dealing with positional deviation can be measured and calculated 
according to such a scheme. The evaluation of measured data according to the standard gives just 
estimation of the device performance in several discrete points (measurement points Pi). But the 
course of individual parameters among the measurement points is just roughly estimated according to 
the standard, giving no warranty on correctness of the results in between points. 

 2 EVALUATION OF MEASURED DATA ACCORDING TO THE STANDARD 
The above mentioned standard introduces evaluation of the measured data that is aimed 

namely at determining the maximum positional deviation over the whole axis (measurement) travel. 
The evaluation of results covers calculation of the parameters related to the positional deviation in 
each of the measurement points Pi, covered also by the deviation boundaries ↑ix +3 ; ↑is ↑ix -

2  (respectively ↑is ↓ix +2 ; ↓is ↓ix -3 in reversal direction). ↓is

 

 

Fig. 1 Example of the graphical presentation of evaluated positional deviation according to the 
standard [1] (results plotted for unidirectional positioning) 

Note that the deviation boundaries are calculated only from measured data, considering their 
variation as caused only by a tested machine and not influenced by the measurement instrument itself. 
This is valid only when the accuracy of measurement instrument is much better than expected 
positional deviations. But for modern numerically controlled axes, operating with resolutions of 
0.001 mm, this is not always the case and the used measuring instrument itself can significantly affect 
the measurement results [2]. 

As you can observe from Figure 1, the standard assumes linear course of the positional 
deviation among the measurement (testing point), as well as linear course of the deviation boundaries.  

 3 EVALUATION OF THE POSITIONAL DEVIATION IN ANY POINT OF THE 
AXIS TRAVEL 
When considering the above presented measurement scheme, following positional deviations 

are measured in individual measurement points [3]: 

    P1:   ∆11, ∆12, ..., ∆1j, ..., ∆1n   
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    P2:   ∆21, ∆22, ..., ∆2j, ..., ∆2n  (1) 
    M  
   Pm:   ∆m1, ∆m2, ..., ∆mj, ..., ∆mn  

where  

i – to m is the running number of the measurement point , 

∆ij  – are positional deviations, 

 j – 1 to n is the running number of the measurement of positional deviation in a given 
measurement point. It is assumed that the same number n of measurements of the positional 
deviation is performed in each measurement point. 

(*Remark: the positional deviation that is designated in the standard [1] as xij, is for sake of 
better clarity and understandability designated by different symbol ∆ij). 

If we want to obtain the estimates of the positional deviations also in other points than the 
measurement ones, we must approximate course of estimates. The least squares method is suitable for 
such approximation. The curve in a form of polynomial of the third order will be placed over the 
points (P1, 1∆ ), (P2, 2∆ ), ..., (Pi, i∆ ), ..., (Pm, m∆ ): 

 ∆ = a + b⋅P + c⋅P2 + d⋅P3 (2)  

where  

∆  – is the positional deviation of the target position and actual position in any point P and P∈ 
<P1; Pm>, 

a, b, c, d  – are unknown parameters of the polynomial. 

Besides that we want to determine also expanded uncertainty U of estimate of the positional 
deviation ∆ in any point P. To be able to do this, we must determine the estimates of polynomial 
parameters a, b, c and d, their uncertainties and covariances among them. Thus we leave the 
evaluation according to the Figure 1 and we get evaluation providing results according to the Figure 
2. To do so, we need to introduce a completely new approach to evaluation of the measured data. 

The positional deviation for each measurement j = 1 to n in each particular point Pi, with i = 1 
to m, can be calculated as the difference between the target position and the measured actual position: 

  (3) iij
'

ij PP −=∆

where  

iP   – is the target (programmed) position,  

ij
'P  – is the actual (measured) position. 

The actual (measured) position comprises two components: ij
'P

  (4) .merijij
' PP δ+=

where  

Pij  – is the position indicated by the measuring instrument,  

δmer.  – is the measurement error in the particular point, in our case estimated as the maximum 
permissible error of the measuring instrument [7]. This means that the error remains constant in 
any point.  
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Fig. 2 Estimation of the positional deviation in any point of the axis travel 

According to the previous calculations of estimates of the positional deviation (as the 
arithmetic means), the set of equations for j = 1 to n positional deviations in m points (target 
positions) can be expressed as [8]: 

 111 PP∆ −=  + δmer                      

 22 2 PP∆ −=  + δmer  (5) 

   M  
  mmm PP∆ −= + δmer

where  

iP   – is the estimate (obtained as an arithmetic mean) of the actual (measured) positions in any 
given point Pi. 

The set of equations describing the positional deviations (5) can be written in a matrix form: 

 x = P  -  i P + i δmer  (6) 

where  

x  – is the vector of the estimates of individual positional deviations (dimension m), 

P   – is the vector of the estimates of measured actual positions (dimension m), 

P  – is the vector of target positions (dimension m), 

i  – is the unit vector (dimension m) and 

x = ( )T21 ,,, m∆∆∆ L  

T
21 )...,,,( mPPP=P  

P = (P1, P2, ..., Pm)T

When taking the matrix notation into account, the covariance matrix U(x) can be written in a 
form (assuming P as non-random vector, P  and δ are independent): 
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 U(x) = U( P ) + U(P) + u2(δ)i iT (7)  

The uncertainty of the target position is zero in our case (no influence on value of the target 
position) so that the covariance matrix U(x) gets the form [4]: 

 U(x) = U( P ) + u2(δ)i iT  (8)  

After specifying the individual terms (because Pi a Pj are independent): 

 U(x) =   +  u
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The uncertainties u(Pi), where i = 1, 2, ..., m, in the matrix (8) are evaluated by the type A 
method form measured data: 
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This procedure yields to the estimates of unknown parameters a, b, c, d, uncertainties of those 
estimates and covariances among them. 

 4 MEASUREMENTS 
The Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, 

started to cooperate with the MicroStep, Ltd. that produces machines for industrial purposes. The 
CNC laser cutting machine with linear drives has been designed in cooperation with the former 
Department of production technique at the FME STU. The machine is of a gantry type with extreme 
dynamics of drives based on linear synchronous motors. The gantry is driven at both sides by direct 
linear motors provided by encoders for positional measurements. The PID controllers rule the 
performance of motors. The supporting part of gantry is equipped with a movable unit for adjusting 
the height of the technological head over the material being cut. The technological table is designed 
for work velocities reaching up to 260 m/min and acceleration up to 25 m/s2. The axes lengths are as 
follows: 4670 mm for X axis, 2143 for Y axis and 317 mm for Z axis. The gantry can be positioned 
separately for each of the individual axes or the combination of movements can be executed as well. 
The positional deviation is measured by a laser interferometer as an external measuring instrument, 
providing results with lower uncertainty than the measuring system of the machine itself [5]. 

To verify the enhanced methodology of the repeated positioning accuracy, measurements in 
10 points of the Y axis have been performed, doing 10 repeated measurements in each point (see Fig. 
3, Fig. 4) [6]. The green curve shows evaluation according to the standard; the blue curve represents a 
regress function and shows the results of the proposed methodology. Regress curves for approaching 
from left and from right are expressed by following equations: 

 ∆zprava = 0.0072729 + 2.17⋅10-5⋅ P – 4.2836⋅10-8⋅ P2 + 4,5325⋅10-11 ⋅P3 (11) 

 ∆zľava = 0.0081716 + 2.49⋅10-5⋅ P – 4.7664⋅10-8⋅ P2 + 4,6966⋅10-11 ⋅P3 (12) 
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Fig.3 Approach from right 

 

Fig.4 Approach from left 

The regress curve characterises analytical expression of the correction curve. Therefore the 
desired (input) value can be corrected and the better positioning accuracy can be obtained. This 
means that corrected values are used as an input instead of the previously intended desired values. 

 5 MEASUREMENT MODEL IN THE TWO AXES 
The basic model (2) without interactions for a two-dimensional case (see Fig. 5) gets the form 
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 ∆ = a + b1⋅P + c1⋅P2 + d1⋅P3 + b2⋅R + c2⋅R2 + d2⋅R3 (13)  

Then the expression (5) transforms to a form 

 ijjiij PP∆ −= + δmer

where index j represents the j-th coordinate Rj

and for x(P,R) that is now a function of coordinates P and R 

 x(P,R)  = jP  -  i Pj  + i δmer  (14) 

and if we introduce the above mentioned designation, we get 
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and the above mentioned procedure can be applied. 
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 Fig.5 Measurements in two axes 

 6 CONCLUSIONS 
The presented methodology gives the opportunity to estimate the positional deviation in any 

point of the axis travel, no matter whether rotational or longitudinal. Moreover it provides the 
estimate of the positional deviation with the respective uncertainty of such estimate. This gives the 
designer or programmer the possibility to build appropriate corrections into the control program or 
the adequate design corrections can be performed in the design of the machine. 

The presented evaluation of measured data according to the standard shows similar behavior 
of the controlled axes when approaching to the desired position from both sides (positive and 
negative). 

The best solution well be to estimate the positional deviation in any point of the surface. It 
means to create regression areas. 
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