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Abstract 

The modeling approach using dimensionless parameters oriented onto thermodynamic analyzes 
has been presented for the so–called working or pressure change processes. With help of only one 
dimensionless parameter, which almost exactly matches the polytropic efficiency, all important 
processes in turbines and compressors of the power engineering systems can be univocally 
determined. Furthermore the important properties of the exergy concept, which differ from such 
properties of the common thermodynamic caloric state parameters like inner energy or enthalpy have 
been entirely discussed and presented a new general method of applying them to process rating. The 
rating quotient obtained, the thermodynamic effectivity, is an exergy characteristics of the energy 
conversions by means of only one numerical value between zero and one. It has been pointed out the 
very good applicability of the dimensionless modeling parameter, which matches the known 
polytropic efficiency, for thermodynamic analyzes, especially the exergy ones. 
 

Abstrakt 

Metodika modelování používající bezrozměrných parametrů je orientována na 
termodynamickou analýzu tepelných procesů se změnou tlaku. Pomocí pouze jednoho 
dimenzionálního parametru, kterým je většinou polytropická účinnost, je analyzována většina 
důležitých procesů v turbínách, kompresorech a energetických systémech. Důležité vlastnosti 
exergetického konceptu, které se liší od vlastností známých termodynamických veličin jako je vnitřní 
energie nebo entalpie jsou diskutovány a prezentovány v nové metodě zhodnocení energetických 
systémů. Termodynamická efektivita jako exergetická charakteristika energetických konverzních 
procesů je parametr v mezích od nuly do jedné. Je to rovněž velmi dobrý dimenzionální parametr pro 
modelování pro stanovení polytropické účinnosti termodynamických a exergetických analýz. 

 

1. INTRODUCTION 
For the basic thermodynamic analysis of any gas change in a power device the perfect gas 

equation of state and the polytropic process model are used. This polytropic model, however, doesn’t 
take into account process irreversibilities. It assumes process reversibility in the same way, as it was 
assumed by the author of this model, Gustav Zeuner. The simplicity of the polytropic model is the 
most valuable advantage.  

In many cases it is important to estimate the process irreversibilities. It is because of the Second 
Law Analysis or the Exergy Method in particular. 
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In the following the application possibility of the irreversible polytropic process model for the 
gas compression modeling and analysis will be discussed. While analyzing the adiabatic compression 
process, the irreversibilities are taken into account by the polytropic exponent numerical value. That’s 
why such a process is often called the pseudo–polytropic (the entropy dSirr will be generated or 
produced due to irreversibilities). 

2. THE IRREVERSIBLE PROCESS MODEL FOR VARIABLE AMOUNT OF 
WORKING AGENT 
To explain the application of the polytropic efficiency of a process to the non–adiabatic 

compression (the appropriate expansion is a very rarely used) the following derivation will be 
presented, [03]. From the First Law there is 

dniVdpdQdI ++=                                                            (01) 
where dQ is the heat supplied or (the usually applied case) carried away (i.e. abstracted). For 
processes, in which irreversibilities are observed, the last equation can be written down as 

dnidLdQdnidQVdpdQdI ++=+++= trevirrrev  
i.e. the total heat dQ in the balance equation of the 1. Law consists of two parts 

irrrev dQdQdQ +=  
where dQrev is the heat exchanged with an outer system and dSirr the dissipative heat TdQirr due to 
process irreversibilities. The useful (technical or shift) work is [01]–[02] 

irrt dQVdpdL +=  

The in the expansion process the really obtained technical (useful or shift) work is 
irrt dQVdpdL −−=−    (for dp<0) 

and in the compression one really supplied, or more exact the observed technical work obtained by 
the working agent (gaseous substance, e.g. the ideal gas) 

irrt dQdLVdp −=  
or the supplied technical (or useful, which is the same) work 

irrt dQVdpdL +=     (for dp>0) 

The first dimensionless partial coefficient σ will take into account the process irreversibilities 
(dissipative energy), namely 
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This coefficient gives an information about the relation of process irreversibilities and technical 
(useful) work in a reversible case by the same state change of working agent (gas) in both processes. 
To achieve a generality it can be assumed 

expansion (dp<0):  expσσ =     (04) 

compression (dp>0):  com

1
σ

σ =    (05) 

Herewith is the 1. Law, Equation (01) to 
dniVdpdQdI ++= σ  

For processes with heat exchange with surroundings (carrying away or supplying it from or to 
outer systems), the second partial dimensionless coefficient can be formulated: 

expansion (dp<0):  
Vdp

dQ
−

== revexpωω  

compression (dp>0):  
Vdp
dQrevcom −

==ωω  



whereby the heat amount dQrev corresponds to the limit case of the reversible process and means the 
heat exchanged (or transferred). The third partial dimensionless coefficient, the mole number change 
coefficient, can be eventually formulated, namely in just the same way as the previous one 

expansion (dp<0):  
Vdp
dni

−
== expνν  

compression (dp>0):  
Vdp

dni−
== comνν  

This coefficient is important, when the leakages in the compression or expansion process are to be 
analyzed. In a real process these partial coefficients σ, ω and ν obviously change, but it can be 
assumed that their value is constant in the whole analyzed process. 

Hence, the First Law Equation (01) will be to 
( ) VdpdnidLdQdnidQVdpdQdI ⋅−−=++=+++= νωσtirrrev  

e.g. 

νωσ −−=
Vdp
dI                                                                 (06) 

Taking into account very good known dependencies for ideal gases, i.e. 

dTcndI p= ;  
1p −

=
k

Rkc  

and the Clapeyron equation of state pV=n R T, it follows 

( ) ( ) pd
k

kTnd ln1ln νωσ −−
−

=                                                  (07) 

whereby the perfect gas was assumed as the working agent (the system). The integration between the 
state 1 and state 2 yields 
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The appropriate substitute polytropic exponent can be written down, e.g. 

( )( )νωσ −−−−
=

1kk
km                                                          (08) 

Thus, taking into account the three characteristic dimensionless coefficients the substitute polytropic 
equation has been obtained [03], i.e. 

.m constpV =  

whereby the polytropic exponent describes process irreversibilities, heat transferred in a process and 
leakages of the working agent (perfect gas), [04]–[05].  

3. THE CASE OF CONSTANT AMOUNT OF WORKING AGENT 

The Equation (06) for ν=0 will be to 

ωσ −=
Vdp
dI  or ωσ −=

dpv
id   (i.e. ωσ −=

vdp
di )                     (09) 

and Equation (07) to 
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After integration one becomes 
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i.e. the polytropic process equation. Comparing exponent of it with the appropriate polytropic process 
exponent it follows 

( )ωσ −
−

=
−

k
k

m
m 11                                                               (11) 

Is there no heat exchange with outer systems (heating up or cooling), then ω=0 (in process & 
chemical engineering the so–called one phase process) and are there no irreversibilities (σ=1), the 
analyzed process is an isentropic one, for which obviously yields m=k. Is there σ=1 and ω=1, the 
process is a reversible isotherm change and the appropriate polytropic exponent m=1. In other cases 
the exponent equals to 
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cf Equation (08). 

 
Fig. 1 Schemes of the compression and expansion processes as typical pressure changing ones 

Analyzing the two typical processes (Fig. 1), one becomes with the above Equation (09) 
following relations: by the adiabatic expansion is the enthalpy change in a technical process less, than 
the reversible useful work, i.e. di/vdp≤1 or di≤vdp, and in the case of adiabatic compression on the 
contrary, i.e. di≥vdp or di/vdp≥1. Defining an appropriate dimensionless parameter suitable for 
further process modeling, another influence factors should be taken into account, namely in such 
a manner that numerical values of this dimensionless parameter does not exceed the only logical 
range between zero and one. So, one should distinguish four possible typical cases, in particular 
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In the special case of adiabatic pressure changing processes the Equation (13a) refers to the 
expansion and the Equation (13d) to the compression. Taking into account Equation (11) it follows 
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respectively. There is not differentiated between expansion and compression because there is known 
in advance what a process should be determined with the dimensionless parameter η. These relations 
are the same as the polytropic efficiencies ηm,com or ηm,exp for the appropriate processes. Taking into 
account Equation (12), which is valid for a general case (i.e. not only adiabatic), one can become for 
the polytropic exponent: 
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for a compression and expansion, respectively. In the special case of adiabatic ones, which are also 
called the pseudo–polytropic processes, the appropriate useful (technical) work can be determined as 
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comt, η

il Δ
=  and il Δ= m,expt,exp η  

respectively. The polytropic process specific heat, 
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for the compression and expansion, respectively. Using Equations (02)–(05) and (09) the appropriate 
total entropy change (reversible and irreversible) in a process can be determined. From the obvious 
relation 

irrdqdqTds +=  
yields 
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for the compression and expansion, respectively. Applying Equations (10) and (14) it becomes 
further 
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respectively. From the two last equations the appropriate exergy change in these processes can be 
calculated. From de=di–T0ds it follows 
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respectively. There is also no need to distinguish between ηcom and ηexp, because at the very 
beginning of modeling procedure it is known, which one of the two processes is to analyze. 

It has been shown above, how easy it can be to proceed by formulating an exergy balance and 
appropriate rating quotient of the pressure changing processes, e.g. [06]. The working agent change in 
a process can be also taken into account. The discussion of such a case has been already presented in 
[05], and in a more detailed version in [04]. 

The process heats can be determined very simple, if only the compression or expansion analyzed 
are not assumed to be adiabatic. 

One more pressure changing process, which is important in power systems modeling and 
analysis is the liquid pressure changing in pumps, where p2>p1. The appropriate dimensionless 
parameter for incompressible working agent can be formulated as 
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For water turbines is can be defined as 
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The practical experience shows, the work spent for pressure increase of liquids is usually negligible. 



4. EXERGY ANALYSYS OF FLOW SYSTEM PROCESSES 
The exergy method of thermodynamic analysis was developed in the sixties and seventies and 

was a very important step in improving the most of mechanical engineering processes and devices. 
The main goal of these improvements was to reduce the energy consumption, i.e. to make the energy 
conversions and energy converters more effective. The greatest disadvantage of the exergy analysis, 
however, was the lack of the unified rating quotient. It seemed and seems to be obvious that on the 
base of the thermodynamic quantity, which allows the objective comparison of different forms of 
energies and energy interactions, the exergy, can be doubtless achieved the possibility of the 
objective comparison of energy conversions with a help of the appropriate generalized rating 
quotients. Alas, it wasn’t so. The number of trials has been done, e.g. [07]–[10], but the presented 
algorithms couldn’t be applied in an enough wide range of particular process cases. 

In this paper there is discussed the unified exergy rating quotient, which bases on the exergy 
balance of the flow system process and which takes into account the specific property of the exergy, 
namely the existence of its zero value point (or inversion point of its changes in a process). 

The exergy analysis and rating of processes discussed below is to find in the main exergy 
monographs [05], [11]–[18].  

A flow thermodynamic system, the energy state of which is characterized by the enthalpy I, 
converts heat dQ into technical (or useful) work dLt. The energy balance condition (1. Law) yields 
dI=dQ+dLt=0 and that of the entropy balance dS=dQ/T+dQ0/T0+dSirr=0 (thermal condition) should 
be taken into account. The analyzed energy converter is not an entropy accumulator — dQ0 is the 
additive heat carried away from the system by the temperature of the natural environment T0 (i.e. 
dQ0<0) to fulfill the energy balance and the thermal condition (entropy balance) at the same time, 
and dSirr the irreversible entropy production (2. Law: dSirr>0). There is no volume compensation 
condition, because of the different character of the technical (useful or shaft) work dLt=Vdp in 
comparison with the volume absolute work dL=–pdV of a closed thermodynamic system. With the 
thermal condition the additive heat equals to dQ0, and must be carried away from the flow system 
converting the heat dQ into the useful work dLt 
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The exergy formula for the flow thermodynamic system can be obtained from 
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There is further 
( ) ( )000I SSTIIE −−−=                                                        (16) 

because for the intensity parameters of the natural (given) environment always valid 
0000I,0 =−= STIE  

The exergy of the flow thermodynamic system is called sometimes the exergy of the enthalpy. 
The very good known behavior of this so–called thermo mechanical exergy wasn’t used yet by 

the formulating the exergy rating quotients, [07]–[10]. Taking into account the special property of the 
system exergy as a thermodynamic parameter of state it was possible to formulate the objective 



exergy rating quotients, independently on the temperature or pressure range in a process: below or 
above the appropriate values in the natural environment (T0 or p0), [05], [18]–[19]. For the perfect gas 
the thermo mechanical exergy can be calculated from Equation (16), 
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It is to state, that there can be 0TpI, ≥e  or 0TpI, ≤e . The appropriate diagrams for the Equation 
(17) are presented in [14], page 41 (Figure 2.6), and [17], page 61 (Figure 2.10) in the coordinates 
T/T0–p/p0 and the most interesting of them in [13], page 69 (Figure 22), and [16], page 41 (Figure 
2.9), in the coordinates eU,Tp–T with the pressure value p as the parameter (the thermo mechanical 
exergy is there called the physical exergy). The particular parts of the thermo mechanical exergy for 
the perfect gas, i.e. the thermal and the mechanical (pressure) exergy can be found noting, that 

dp
p

e
dT

T
e

de
T

Tp

p

Tp
Tp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∂
∂

∂
∂

 

and the further integration can be realized in an arbitrary way, e.g. assuming p=p0 (dp=0) and then 
T=T0 (dT=0), if only T0 and p0 are considered to be constant in the time of analysis. Using the 
appropriate differentials [17], the following formulas can be obtained 
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Thus, each of the parts described by Equations (18)–(19) can be taken separately in the exergy 
balance of any particular thermo mechanical process analyzed, i.e. 

irr0tQpI,TI,TpI, sTleeee Δ−+=Δ+Δ=Δ                                                (20) 
where 
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is the exergy of heat exchanged with the surroundings and tl  the shaft work of the flow system 
analyzed. It is obvious, that the exergy Equation (21), as the process quantity, does change its 
algebraic sign, i.e. the direction in relation to the system balanced, while crossing in a process the 
value of T=T0. It can be then divided into arising +

je  and vanishing −
ie  parts, i.e. 
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whereby + is for delivering and – for carrying away the appropriate quantity, whereby 
( ) ( ) ( )irrirr0j sgnsgnsgn sdsdTe ==+  and ( ) ( ) ( )irrirr0i sgnsgnsgn sdsdTe −=−=−               (23) 

because there is always T0>0. The absolute value brackets have been used for calculation 
convenience only. The superscripts > or < indicate the range of changes of the appropriate intensity 
(here temperature T0): above or below its value in the natural environment, respectively. The terms of 
Equation (22), which do not concern the process analyzed, will be simply set to zero in the exergy 
balance Equation (20). 

The Equation (17) shows, that the thermal part of the total exergy change ΔeI,T has an inversion 
point while crossing the value T=T0 in a process. Such a behavior is peculiar for the exergy; other 
caloric parameters of state, such as the enthalpy I, have no inversion point of their algebraic sign in 
any process. The zero point of these parameters is selected in a fully optional way. The mechanical 
exergy change ΔeI,p on the contrary, has no algebraic sign inversion point, even while crossing the 
pressure value of the natural environment p0. These facts should be taken into account by balancing 
processes in order to rate them in an objective, independent way. Dividing the exergy change given 
by Equation (17) in a similar way as the Equation (22), yields 



<><> ∇−∇−Δ+Δ=Δ TTTTTI, eeeee  
but from Equation (19) there is 

pppI, eee ∇−Δ=Δ  

whereby conditions Equation (23) are valid. The differential symbol Δ indicates an increase and ∇ 
a decrease of the appropriate exergy change, respectively (according to [14], where adopted from J.H. 
Keenan). The balance Equation (20) can be then written in a form of the „thermodynamic 
transformation” (or „thermodynamic transition”), namely 

irr0tQQpTTtQQpTT sTleeeeeleeeee Δ++++Δ+Δ+Δ→+++∇+∇+∇ −
<
+

>
−

<>
+

<
−

>
+

<>        (24) 
or in general 

∑ ∑ Δ+→ +−
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All terms of the above balances are set to zero, when they do not concern the appropriate process 
analyzed. The universal, independent and objective rating quotient can be formulated as the process 
thermodynamic effectivity 
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The application of this quotient, the process (or system) thermodynamic effectivity was detailed 
discussed in the monograph [05], [18] and [20]. It has been found, that it is the generalization of the 
exergy rating quotients used usually and, what’s more, it can be formulated without any subjective 
factor. 

5. THERMODYNAMIC EFFECTIVITY OF A PROCESS IN A TURBINE 
Power turbines do work usually adiabatic, so the „thermodynamic transformation”, Equation 

(24) will be to 

irr0tTpT sTleee Δ++Δ→∇+∇ −
<>  

The terms peΔ  and +tl  were also set equal to zero because they do not concern the gas expansion 
process. During expansion the gas temperature gets lower which means, that by temperatures above 
T0 there is always >Δ Te =0 and under T0 <∇ Te =0. Thus, the thermodynamic effectivity quotient is 
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The particular forms of this quotient for the ranges above or under the natural environment 
temperature T0 are 
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The first quotient were very often presented in the literature as the exergy effectiveness of the gas 
expansion process in a turbine, but there wasn’t defined the appropriate temperature range under or 
above the T0. Noting τ1=T1/T0 and τ2=T2/T0 as the perfect gas dimensionless temperatures at the start 
and at the end of a process, respectively, which can be calculated i.e. with a help of the isentropic (or 
adiabatic) effectiveness, all the three presented quotients are to 
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where ηm,exp is the polytropic process effectiveness, and in the case, the temperatures T1>T0 and 
T2<T0. 
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If τ2=1 (or T2=T0), the last of these three equations is identical with the first of them. The second 
equation, however, shows the independence of the thermodynamic effectivity value on process 
intensities — it depends only on the gas properties (k) and irreversibilities, which are expressed by 
the polytropic (or pseudo–polytropic) exponent m. 
 

For non–adiabatic gas expansion processes the expression of the „thermodynamic 
transformation” can be written as 
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and the appropriate thermodynamic effectivity quotient 
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When the heat delivered (subscript +) and carried away (subscript –) will be equal to zero, the 
above quotient will be the same as the Equation (27). In the practical technology such a non–
adiabatic process is to analyze in the refrigerating engineering as a process in so–called expansion 
engines. It takes places in the temperature range under the natural environment value T0, where the 
heat is delivered. For such processes the thermodynamic effectivity quotient will be to 
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This form of the exergy rating quotient for the low temperature expansion engines are to be find 
among others in [14], [21]–[24].   

The expansion engines, however, very often do work in the temperature range which crosses the 
natural environment temperature T0. The non–adiabatic behavior is a result of the temperature 
difference between the working agent and the surroundings. By temperatures above T0 there is to 
observe the heat flow from the working agent to the surroundings and under the T0 from the 
surroundings to the working agent. The expanding gas will change its temperature from the T1 to T0 
and further to T2. All the terms with superscripts > will be integrated in the limits from T1 to T0, and 
all the terms with superscript < from T0 to T2. Additionally <

−
>
+ = QQ ee =0 is taken into account. The 

thermodynamic effectivity of the process discussed will be therefore to 
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6 THERMODYNAMIC EFFECTIVITY OF PROCESSES IN A COMPRESSOR 
For the adiabatic compression process the „thermodynamic transformation” can be formulated 

as 

irr0pTTt sTeeel Δ+Δ+Δ→∇+ ><
+  

and the thermodynamic process effectivity in the whole temperature range 
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whereby appropriate integrations are to be made between T1 and T0 or T0 and T2, if only the T0 value 
lies between the two process temperatures. It follows from the last equation for the range above T0: 
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and for the range below T0: 
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The first of the two above rating quotients is the usually formulated in the literature exergy 
effectiveness of the adiabatic compression process, e.g. [14], [21]. For the perfect gas as working 
fluid yields (at T1=T0): 
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or assuming a polytropic process (for T1=T0, as well), 
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where π equals to p2/p1. For the process below natural environment temperature T0 one gets 
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This result was obtained by assuming the polytropic compression process. In fact, the assumed 
polytropic process is the so–called pseudo–polytropic one, because the exponent m gives the 
information about process irreversibilities (irreversible adiabatic process). In the same way the 
thermodynamic effectivity of the adiabatic expansion process of the perfect gas equaled to the 
polytropic effectiveness. For the adiabatic compression, however, the η≡ηm value changes in the 
range between (k–1)/k and 1, [05], [18], [20]. 

For the general case T1≠T0 and perfect gas as working fluid the thermodynamic effectivity by 
T1<T0  but T2>T0 it becomes 
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and by T1>T0 
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If only T1=T0, (or τ1=1) the last formula will be the same as the quotient obtained for such a case 
above, Equation (28), because the natural logarithm of one equals to zero.  

 
„Thermodynamic transformation” for compression processes above T0 with concurrent cooling 

by T2≥T1 is 

irr0pTQt sTeeel Δ+Δ+Δ+→ >>
−+  

and the appropriate thermodynamic effectivity quotient 
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For the isothermal compression in the same way the quotient 
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can be obtained, that corresponds to the exergy effectiveness formulated e.g. in [14], [21] or [25]. It 
was proposed (e.g. in [14], [25]) as the general exergy rating quotient for gas compression processes 
of all kinds. But, if only the analyzed isothermal process runs above the natural environment 
temperature T0, than from the Equation (29) yields 
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So, the Equation (30) is the special case of the last expression, when only T≠T0 (especially T≥T0). 

7. NUMERICAL VALUES OF RATING QUOTIENTS 

The numerical values of dimensionless parameter η for common compression and expansion 
processes are needed to determine a proper description of real processes in real power devices. They 
can be obtained directly an indirectly using another rating quotients, e.g. the isentropic efficiency. 
Results of an extensive study have been presented in [03] and [05]. The study based on data found in 
scientific and engineering papers, specializing handbooks, textbooks and manufacturers information. 

Practical numerical values of the expansion isentropic efficiency in steam turbines are about 0.8, 
and for gas turbines are in the range between 0.85 and 0.92. The appropriate value of the 
dimensionless parameter η that determines the expansion process can be chosen using the left–hand 
Equation (31) or the diagram in Fig. 2, taking into account the given pressure change. The polytropic 
efficiency for adiabatic expansion processes in real power devices equal to 0.7–0.9. For adiabatic 
compressions the isentropic efficiency lies in the range from 0.8 to 0.9, but there are units that are 
characterized by the isentropic efficiency of even 0.7. The dimensionless parameter η can be then 
found using right–hand Equation (31) or the diagram in Fig. 3. 
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These equations can be rearranged to get 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

−

1

2

k
1k

1

2
exps,

ln1

11ln

p
pk

p
pk η

η  and 
( )

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
−

111ln

ln1

k
1k

1

2

coms,

1

2

p
pk

p
pk

η

η  

respectively. The polytropic efficiency, which in fact matches the dimensionless parameter η, is for 
big compressors equal to 0.80–0.85, for the middle ones 0.75–0.80 and for little units 0.70–0.75. The 
appropriate polytropic exponent is in the range between 1.45 and 1.50. 

The expansion devices, called detanders, used in the low temperature technologies, e.g. in air or 
helium liquefaction systems are characterized by the „isentropic efficiency”, although they do not 
operate adiabatic (usually a little heat supply below the natural environment temperature T0). The 
appropriate rating quotient refers to that of adiabatic expansion, Equation (31). For air expansion 
machines the appropriate numerical values are 

– for the start temperature   30 °C  ηs,det=  0.66–0.80 
– for the start temperature –40 °C  ηs,det=  0.62–0.76 



– for the start temperature   –50 °C  ηs,det=  0.60–0.68 
– for the start temperature –120 °C  ηs,det=  0.52–0.60 

whereby the less values refer to the machines of less capacity. In the practice there is assumed the 
value of isentropic efficiency in the range between 0.65 and 0.85.  

Piston compressors with cooling are characterized by the very good known isothermal efficiency 
quotient (usually from 0.4 to 0.7), but very often the appropriate polytropic exponent is given. Its 
numerical values lie in the range between 1.18 and 1.35. For little piston compressors the isothermal 
efficiency equals 0.25–0.40, for one cylinder high–speed ones 0.35–0.55, for little multistage or 
medium units with the mean piston speed of about 5 m/s 0.40–0.60 and for medium multistage ones 
with the mean piston speed equal or below 3.5 m/s 0.55–0.70. The isothermal efficiency of a single 
stage in multi–stage compressors with inter–stage cooling equals about 0.75–0.80. For single stage 
piston compressors the isentropic efficiency can be also given. It equals about 0.85. Rotary 
compressors with cooling can be characterized by the isothermal efficiency of 0.62–0.67. Processes 
in single stage piston compressors with cylinder cooling with compression number of 3–6 can be 
described by the substitute polytropic exponent m=(0.92…0.98)k. For the multistage units processes 
in every next z>1 stage the appropriate polytropic exponent can be calculated from the formula 

kmm 015.01zz += −  or ( )kzmm 1015.01z −+=  
where m1 is the exponent of a compression process in the first stage that could be determined with 
help of the previous formula. 

At last the processes in water pumps and water turbines should be determined. It can be assumed 
that the appropriate efficiency (or dimensionless modeling parameter) η equals from 0.8 to 0.99. 

 

 

 
Fig. 2 Isentropic efficiency s,expη  vs. dimensionless parameter η for expansion, [03] 

Fig. 3 Isentropic efficiency coms,η  vs. dimensionless parameter η for compression, [03] 

8. CONCLUSIONS 
The presented method of modeling the so–called working or pressure change processes in power 

(also chemical) engineering systems with use of only one dimensionless parameter is very good 
oriented onto thermodynamic analyzes, which has been shown above. 

With the already worked out universal exergy rating procedure for processes of the different 
kind using the thermodynamic effectivity quotient, the overall complex system thermodynamic 
effectivity can be expressed by means of such effectivities determined for constituent processes, 
[18]–[19]. The simplicity of the presented approach is a very important feature. 

The presented special behavior of the system exergy as the caloric parameter of state differs very 
clearly from the behavior of other caloric parameters of state, such as the inner energy or enthalpy. 



Changing in a process it shows an inversion point of the algebraic sign while crossing the value of the 
natural environment intensities (or in general their functional dependencies). Another words, the flow 
system exergy has the very exact defined zero–value point, whereas for the inner energy or enthalpy 
this point is usually assumed by the investigator in order to attain a certain calculation convenience. 

The stated special behavior of the exergy as the caloric parameter of state, which is very good 
known and has been already many times described in exergy monographs, makes its properties very 
similar to them of the caloric process quantities like heat or work (exergy of heat or exergy of work, 
as well). The zero point by the last mentioned quantities corresponds to the „no heat” or „no work” 
transferred. The exergy of heat (or absolute work for closed systems) changes its algebraic sign, i.e. 
the direction of delivery, by T=T0 (or p=p0, respectively). This is because of the Carnot’s thermal (or 
mechanical) coefficient value, which equals to 

T
T0C

t 1−=η   (or 
p
p0C

m 1−=η ) 

It can be seen, that the form of the thermal exergy part, Equation (18), do agree with the form of 
the heat or absolute work exergy, respectively. That is why it was a trial undertaken to use this 
statement in the objective rating of thermo mechanical processes. It has been proved that by dividing 
the system exergy changes into thermal and mechanical (pressure) parts with further assigning them 
to the disappearing or created exergy terms alike the parts of the heat exergy and work exergy above 
or below the appropriate intensities T0 and p0, the generalization could be achieved in a formulation 
algorithm of the exergy rating quotients, Equations (25)–(26) with Equation (23) as the generalized 
condition. The process thermodynamic effectivity, Equation (26), can be treated as the 
thermodynamic (or energy conversion) rating quotient, which has been formulated in a pure objective 
way. The so–called „thermodynamic transformation” or „thermodynamic transition”, Equation (24) 
or Equation (25), is not an equation because of the different value of each exergy part — they can be 
balanced only in a traditional exergy balance formula, which is represented by Equation (20). 

The presented thermodynamic effectivities of processes in turbines and compressors do mostly 
agree with the exergy rating quotients formulated in the literature, what’s more, they are defined very 
strictly for the certain temperature ranges above or under T0. One of the greatest advantages of the 
proposed algorithm is the possibility of the system rating in a unified or and objective way (e.g. [05], 
[18]–[19], the numerical example in [26]). In Fig. 3 and Fig. 4 the dependencies of the 
thermodynamic effectivity in adiabatic expansion and compression on the dimensionless modeling 
parameter have been presented. 

 

 

 

 
Fig. 4 Thermodynamic effectivity εexp vs. dimensionless parameter η for expansion, [05] 

Fig. 5 Thermodynamic effectivity εcom vs. dimensionless parameter η for compression, [05] 
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