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Abstract 
The electrochemical machining (ECM) belongs to the unconventional machining methods. 

ECM is suitable for hard and extra hard materials used for cutting and moulding tools manufacturing 
and also for special forms machine part manufacturing used in aeronautics, prothesis and 
hydropneumatic machinery. ECM is a very complex process as the result of a set of electric, 
mechanics and chemical parameters. So the analytical modeling of the process is difficult. Due to the 
large number of measurements required, the artificial neural network very greatly simplifies the 
relationship between the input and the output parameters. The neural network was trained with a set 
of data containing very different machining parameter choices. This paper presents the results 
obtained for the prediction of some output parameters.   

Abstrakt 
Elektrochemické obrábění (ECM) patří mezi nekonveční metody obrábění. ECM je vhodné 

pro tvrdé a extra tvrdé materiály a používá se při výrobě řezacích a lisovaných nástrojů a taktéž pro 
speciální díly používané v aeronautice, tvorbě protéz a hydropneumatických strojů. ECM jako velmi 
komplexní proces je výsledkem sady elektrických, mechanických a chemických parametrů. Takže 
analytické modelování procesu je složité. Díky nutnosti provést velké množství měření, umělá 
nervová síť podstatně zjednodušuje vztahy mezi vstupními a výstupními parametry. Neuronová síť 
byla testována pomocí sady dat, které obsahují různé mechanické parametry. Tento příspěvek 
prezentuje výsledky získané pro odhad několika výstupních parametrů. 

 1 INTRODUCTION 
The anodic dissolution of metals was already known in the previous century. But it was not 

until the 1960s that it came into use as a practical machining method. In non-traditional machining 
processes, electrochemical machining (ECM) has tremendous potential on account of versatility of its 
applications, and it is expected that it will be a promising, successful and commercially utilized 
machining process in the modern manufacturing industry [De Silva 1999, Lievestro 2004].  

The ECM has some technological variants, such as electrochemical micromachining (EMM), 
electrochemical discharge machining (ECDM), electrochemical polishing (EP) and electrochemical 
grinding (ECG).  The main characteristic of ECG is that the passive layer resulted from anodic 
dissolution is removed by an abrasive electrode wheel with artificial diamond in a metallic binder. It 
is known that ECG allows acceleration of stock removal, reduction of diamond consumption and 
improvement of machining quality and operational characteristics of produced parts and tools 
[Lyubimov 1998]. 
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 2 EXPERIMENTAL DETAILS 
The ECG input parameters are mechanical, electrical and chemical. As mechanical may be 

mentioned abrasive wheel rotation,  relative speed between electrode and work piece, longitudinal 
feed rate, normal pressure abrasive electrode – work piece, machining area, work piece material. As 
electrical may be mentioned supplying source voltage, intensity of d.c., current density. Chemical 
parameters are relationship with electrolytes formula and concentration. As ECG output parameters 
may be mentioned stock removal, diamond consumption, machined surface quality and roundness of 
edges.  

The goal of this research is to determine the influence of voltage U [V], contact pressure p 
[daN/cm2], relative speed v [m/s], feed rate S [ds/min] and height of the contact surface h [mm] on 
stock removal Q [cm3/min] and diamond consumption DC [cm3/cm3].  

Because the process is very complex the analytical modelling of ECG is difficult. The neural 
network modelling was chosen because this methodology is an alternative to modelling physical and 
non-physical system with scientific or mathematical basis.  

Experimental values for input and output parameters are shown in Table 1. The experiments 
were made based on multicriterial programmed method.  

Table 1. Experimental data 
U p v S h Q DC 

5 4 18 8 8 0.0053 0.0023 
11 4 18 8 4 0.0458 0.0017 
5 8 18 8 4 0.0114 0.0039 
11 8 18 8 8 0.0503 0.0034 
5 4 34 8 4 0.0062 0.0018 
11 4 34 8 8 0.0428 0.0016 
5 8 34 8 8 0.0114 0.0038 
11 8 34 8 4 0.0809 0.0026 
5 4 18 16 4 0.0054 0.0031 
11 4 18 16 8 0.0276 0.0026 
5 8 18 16 8 0.0100 0.0047 
11 8 18 16 4 0.0579 0.0033 
5 4 34 16 8 0.0054 0.0028 
11 4 34 16 4 0.0502 0.0014 
5 8 34 16 4 0.0117 0.0039 
11 8 34 16 8 0.0509 0.0036 
2 6 26 12 6 0.0038 0.0038 
14 6 26 12 6 0.1052 0.0016 
8 2 26 12 6 0.0086 0.0016 
8 10 26 12 6 0.0236 0.0041 
8 6 10 12 6 0.0104 0.0040 
8 6 42 12 6 0.0190 0.0018 
8 6 26 4 6 0.0181 0.0018 
8 6 26 20 6 0.0145 0.0027 
8 6 26 12 2 0.0186 0.0016 
8 6 26 12 10 0.0095 0.0035 
8 6 26 12 6 0.0138 0.0025 

 

 3 NEURAL NETWORK MODELLING 
Neural networks perform computation in a very different way than conventional computers. 

Neural networks are built from a large number of very simple processing elements, neurons that 
individually deal with pieces of a big problem. A processing element (PE) simply multiplies an input 
by a set of weights, and nonlinearly transforms the result into an output value. The principles of 
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computation at the neuron level are deceptively simple. The power of neural computation comes from 
the massive interconnection among the neurons and from the adaptive nature of the parameters 
(weights) that interconnect them [Galantucci 2000]. 

The neural network architecture which is most frequently used in data fitting and non linear 
approximation consists of three layers: input layer, hidden layer and output layer. In the  input layer 
each neuron corresponds to an input parameter and in the output layer there is a neuron for each 
output parameter. In hidden layer, the number of neurons may vary. For neurons from hidden and 
output layers, the activation function and learning rule are chosen. 

Multilayer feed forward neural networks offer a generous framework for modelling non linear 
phenomena whenever the physical insight fails in providing relevant information for the construction 
of a parameterized model, whose parameters play precise roles in capturing the essentials of studied 
behaviour. The neural network operates as a nonlinear mapping, parameterized by the weights and 
biases of its layers, which can be adjusted so as to fit experimental data, but without any physical 
meaning for the identified parameters. In  

In order to compare alternative neural network models and to measure the performance of the 
network for a particular data set MSE, NMSE, AIC and MDL information criteria are used. 

MSE (Mean Squared Error) calculates the mean of squaring the difference between the desired 
output and corresponding network output for each row from data set. The smaller the mean error is, 
the better the equation. 

The NMSE (Normalised Mean Square Error) is an estimator of the overall deviations between 
predicted and measured values. It is defined as:  
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where: 

P  - the number of processing elements,  

N  - the number of exemplars in the data set, 

dij  - desired output for exemplar i at processing element j. 

The NMSE generally shows the most striking differences among models. If a model has a 
very low NMSE, then it is well performing both in space and time. On the other hand, high NMSE 
values do not necessarily mean that a model is completely wrong. That case could be due to time 
and/or space shifting. 

Akaike’s information criterion (AIC) is used to measure the tradeoff between training 
performance and network size: 

 ,k2)MSEln(N)k(AIC +=  (2) 

where: 

k  - the number of network weights, 

N - the number of exemplars in the training set.  

The goal is to minimize this term to produce a network with the best generalization. 
Rissanen’s minimum description length (MDL) criterion is similar to the AIC in that it tries to 
combine the model’s error with the number of degrees of freedom to determine the level of 
generalisation. It is defined as: 
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 4 RESULTS AND DISCUSSION 
The neural network models were constructed to predict the stock removal and diamond 

consumption based on the experimental data from Table 1. In Table 2, there are presented the error 
criteria for training process of some different NNs topologies.  

Cases 1 to 8 refer to multilayer perceptrons (MLPs) that are layered feedforward networks 
typically trained with static backpropagation. These networks require static pattern classification, are 
easy to use, can approximate any input/output map but they train slowly. In case 1, the NN has 1 
hidden layer with 4 neurons, tanhsigmoid activation functions are considered for all layers, learning 
rule is momentum and 1000 epochs are considered for training. Case 2 is similar with case 1 
excepting the number of epochs which is 5000. The activation function from case 2 becomes 
sigmoidian and case 3 is obtained. The difference between the 3rd and the 4th case is that in case 4 the 
hidden layer has 5 neurons. In case 5, the NN structure is like in case 4, but tanhsigmoid activation 
function is used.  

The NNs from cases 6 to 8 have two hidden layers, each of them with 4 neurons momentum 
learning rule. In cases 6 and 7 the activation functions are tanhsigmoids and the number of epochs is 
3000 respectively 5000. Case 8 is similar with case 7 excepting the activation function that is 
sigmoid.  

Case 9 corresponds to a generalized feedforward network (GFN), which is a generalization of 
the MLP such that connections can jump over one or more layers. In theory, a MLP can solve any 
problem that a generalized feedforward network can solve but requires hundreds of times more 
training epochs than the generalized feedforward network containing the same number of processing 
elements. The GFN has 1 hidden layer, the transfer function is tanhaxon, momentum is the learning 
rule and the network was trained for 5000 epochs. 

Table 2 Analysis of different NN topologies 

Case MSE NMSE R AIC MDL 

1 0.0018 0.0076 0.9962 -102.2 -114 

2 0.0004 0.0019 0.9989 -114.4 -130 

3 0.0037 0.0628 0.9704 -82.76 -94 

4 0.0036 0.0605 0.9719 -67.75 -82 

5 0.0009 0.0037 0.9981 -105.3 -120 

6 0.0024 0.0102 0.9953 -54.34 -73 

7 0.007 0.0031 0.9982 -86.4 -105 

8 0.023 0.39 0.72 6.95 -12 

9 0.0044 0.0184 0.9909 -58.38 -74 

For each case, the error criteria MSE, NMSE, AIC and MDL are performed in order to 
evaluate general performance of the NNs. In Table 2 R is the correlation coefficient. The best 
topology from those presented in Table 2 corresponds to 2nd case. 
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Fig. 1 AIC ( .) and MSE (—―) criteria vs. numbers of epochs 

The testing data set has 32 different experiments and is used to test the performance of the 
network. Once the network has been trained, the weights are then frozen, the testing set is fed into the 
network, and the network output is compared with the desired output. The testing set is specified in 
the same manner as the validation set. 
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Fig. 2 Graph between experimental (♦) and predicted values for stock removal (—―) 

In figures 2 and 3 are shown the predicted and the experimental values of the two outputs of the 
neural network in the test process. 
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Fig. 3 Graph between experimental (♦) and predicted values for diamond consumption (—―) 
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