
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava
číslo 2, rok 2006, ročník LII, řada strojní

článek č. 1554

Péter SZÁNTÓ*, Gábor SZEDŐ**, Béla FEHÉR***

IMPLEMENTING 2D MEDIAN FILTER IN FPGAS

IMPLEMENTACE 2D STŘEDOVÉHO FILTRU V FPGAS

Abstract
This paper presents an FPGA implementation of a two-dimensional median filter architecture

for image and video processing applications. The architecture exploits sorting based on partial rather
than complete per-pixel information. This allows performance enhancement, which is a key point in
image filtering, as the sampling frequency is typically relatively high.

Abstrakt
Příspěvek se zabývá FPGA implementací architektury 2D středového filtru v obrazových a

video aplikacích. Architektura těží z výhodnosti rozdělení na části dat před skládáním kompletních
per-pixel dat. Tento způsob umožňuje vylepšení, které je klíčové při obrazové filtraci, kde je
vzorkovací frekvence relativně vysoká.

 1 INTRODUCTION
Unlike FIR or IIR filters, the median filter is a non-linear algorithm with interesting

properties: it can effectively remove impulse like noises, while preserving the edges of the input
signal.

WV

WH

Fig. 1 2D Median Filtering

There are two basic types of median filters: non-recursive and recursive. The former works by
sorting the input samples in the filter window, and outputting the median of the sorted values. In 2D
case a WH*WV window is moved across the input image (or frame), where WH denotes the horizontal
and WV denotes the vertical size of the window in pixels. The centre sample of the window is
replaced by the median of the samples within the window (Figure 1). The current window is marked
with white dashed square, the next window is marked with black dashed square; the new samples
(which have to be processed to generate a new output) are dark grey. The recursive method uses input

* Péter Szántó, Department of Measurement and Information Systems, Budapest University of Technology and

Economics, Magyar tudósok krt. 2., Budapest, (+36) 1-463-2066, szanto@mit.bme.hu
** Gábor Szedő, Xilinx Inc, 2100 Logic Dr., San Jose, (+1) 59 732 4380, gabor.szedo@xilinx.com
***Béla Fehér PhD, Department of Measurement and Information Systems, Budapest University of Technology

and Economics, Magyar tudósok krt. 2., Budapest, (+36) 1-463-2686, feher@mit.bme.hu

179

samples, as well as previous output samples for filtering, thus allowing faster response to the
changing properties of the input. This paper mainly focuses on non-recursive filters, but the presented
architecture is also applicable for recursive filtering.

 2 PREVIOUS WORK
There are lots of different architectures for implementing median filters both in software and

in hardware. Software implementations vary from simple full-sorting to more special algorithms,
which take advantage of special requirements, such as the fact that only a fraction of the data changes
from time to time.

Hardware implementations can be classified by different properties. Bit-serial approaches ([1])
do not explicitly sort the input data; instead they select the appropriate sample as the output by
inspecting the bits of the input samples in successive clock cycles. Thus, performance is proportional
with the input data width (but not necessarily with the filter window size); for high resolution these
architectures may limit the sample or pixel rate. Word-parallel architectures can either store the
samples in the order of arrival [2] or in sorted order. Sorted order architectures can be implemented as
sorting networks ([3]) or systolic arrays. The architecture presented in this paper belongs to the
second group – while sorting networks can be easily pipelined, they require a large number of
comparators. On the contrary, the presented method requires minimal number of comparators [4].

 3 FILTERING IN 2D
Figure 1. illustrates that moving the filter window with one pixel column requires WV new

samples to be entered, and WV old samples to be discarded from the filter kernel. 2D filters can be
partitioned into three groups based on the method they handle these new samples.

Architectures originating from 1D filters can handle one new input sample in one clock cycle.
Therefore, they require WV clock cycles to generate one valid output, so for real-time processing the
filter operating frequency should be the pixel clock multiplied with WV.

Another set of architectures process WV number of samples in a single clock cycle. Although
operating frequencies of these filters are much lower (equal to the pixel frequency), hardware
resource requirements are higher.

Mixed mode architectures can process two or more input samples in one clock cycle, thus
reducing operating frequency requirements at reasonable complexity.

 4 PROPOSED ARCHITECTURE
The proposed architecture is part of a video processing system, which receives progressive

720x576 pixel sized video at 25 frames/second, thus the raw pixel clock equals to 10.4 MHz.
Architectural decisions were based on these criteria and capabilities of modern FPGAs. The maximal
required filter window size is 7x7 pixels, as this filter size is able to remove large noise pulses, while
does not decrease the image too much. The architecture is a systolic array which can process one
input sample in every clock cycle. The top-level block diagram of the filter architecture is shown on
Figure 2.

The filter receives 24 bit RGB values and control signals (line end, frame end). The Input
Front-end consists of a Line Buffer which stores WV-1 number of lines and a Filter Value Generator,
which produces an appropriate value for the sorting process, for example the luminance, or something
close to this property.

The Filter Core itself generates a pointer to the median value, which addresses an RGB Delay
Line (which stores the RGB values of the filtering window) to generate the final output.

The Control block calculates the address for the Line Buffer, generates the global control
signals for the Filter Core and the appropriate output control signals, like line end and frame end.

180

LINE
BUFFER

FVG

FILTER
CORE

RGB
INPUT

FILTER
OUTPUT

RGB VALUES

CNTRL

CNTRL
OUTPUT

CNTRL
INPUT

DELAY
LINE

ADDR

Fig. 2 General architecture

 4.1 Input Front-end
The Input Front-end feeds the filter with pixels from WV=7 lines in case of a 7x7 filter,

therefore, 6 input lines should be stored internally for further processing – they are stored in the line
buffer. The required size of this buffer is

 720*6*3=12960 (1)

bytes, which can be stored in 7 BlockRAMs within the FPGA. As the Filter Core processes one input
in a clock cycle, the Line Buffer is implemented in a 1D memory array storing the required number
of input lines (in 7x7 case 6 lines are stored in a single memory array).

 The output of the line buffers feeds the Filter Value Generator. Instead of computing the real
luminosity value, the current implementation simply sums the R, G and B components to form a
luminosity-like value

 Y=R+G+B (2)

However, as long as the Filter Value Generator is pipelined, there is no limit on its
complexity; therefore more complex calculations, such as real RGB to YCbCr color-space
conversion, can be also implemented. Y values retained for sorting can be represented on 10 bits.
Note, that Y values can be similar for very different RGB values. As the sorting module can not take
this into account, the filtered image may be distorted.

 4.2 Filter Core
The Filter Core is responsible for the actual sorting process. It consists of WH*WV similar cells

and an Empty Generator block. The middle cell connects to the Delay Line to address it.

FILTER
CELL

FILTER
CELL

FILTER
CELL

EMPTY
GEN

DELAY
LINE

(FIFO)

FILTER DATA
INPUT

RGB
INPUT

RGB
INPUT

T
O

O
T
H
E
R

C
E
L
L
S

T
O

O
T
H
E
R

C
E
L
L
S

„AGE”

Fig. 3 Filter Core architecture

181

 Each cell stores one sample (the filter value) of the filter window together with the “age” of
the given sample. Age values show the number of clock cycles any given sample have been staying in
the filter. Obviously, the sample with

 age=WH*WV-1 (3)

is the oldest, which should be discarded. In every clock cycle, each cell selects the appropriate
function to either:

• Load a new sample

• Load sample from the cell to the right

• Load sample from the cell to the left

• Keep current sample

In order to make a selection, cells have to know the results of comparisons between the new
sample and sample values held by the cell itself and its nearest neighbours, as well as the position of
the oldest sample. The decision algorithm for a given cell can be summarized by the following
pseudo code. Empty denotes if the current cell stores the oldest sample, empty_right and empty_left
signals shows whether the oldest sample is on the right or the left of the current cell. Variables
cmpr_curr, cmpr_left and cmpr_right hold the result of the comparison with the new sample for the
current, the left and right adjacent cells, respectively.

if (empty)
 if (cmpr_left AND not cmpr_right)
 load new sample
 else if (not cmpr_left)
 load left sample
 else
 load right sample
else if (empty_right)
 if (not cmpr_curr)
 if (cmpr_left)
 load new sample
 else
 load left sample
 else
 keep current sample
else if (empty_left)
 if (cmpr_curr)
 if (not cmpr_right)
 load new sample
 else
 load right sample
 else
 keep current sample

To implement the above functionality, each cell consists of a comparator, an age counter, an
“empty” signal generator and the decision (control) logic. The comparator compares the data of the
cell with the new sample; the age counter counts the number of clock cycles the given data have been
staying in the filter; while the empty signal shows if the sample of the cell is the one to be thrown
away. Figure 4. shows the block diagram of a cell.

Grey blocks represent registers, while white blocks are combinatorial logic. DATA stores the
Filter Value of the given pixel, LEFT_SAMPLE, RIGHT_SAMPLE and NEW_SAMPLE are the
data of the left and the right adjacent cells and the new sample, respectively. Age variables are
labelled with the same logic. The CNTRL block generates all control signals for the multiplexers (to
make the diagram reasonably simple, control connections are not shown on Figure 4.).

Depending on the selected operation, the age counter may also load values from adjacent cells.
When the new sample is loaded, the age counter is set to zero, when the right or the left sample is
loaded, the corresponding incremented counter value is loaded, and when the current sample is kept
the local counter is incremented.

182

For every cell, the empty_left and empty_right signals are generated asynchronously by an OR
gate; empty_left is the result of combining all the empty signals of cells on the left of the given cell,
whereas empty_right is the same for cells on the right of the given cell.

Fig. 4 Cell block diagram

The output of the cell array is simply the age counter of the median cell. As the input of the
filter cells has additional latency inserted by the computation of the filter value, the FIFO should be
addressed by the latency compensated age counter value.

 4.2. Delay Line
A straightforward implementation may link the filter value and the full RGB value together,

which is a trivial way to handle these values. However, this method unnecessarily complicates the
filter cells as there should be a register and a multiplexer for the RGB data path. Therefore, our
architecture employs a delay line, which is an addressable FIFO storing the RGB pixel values. The
filter cells themselves do not generate colour output but address this FIFO for RGB information. The
address is the “age” of the sample on the output of the filter core. In Xilinx FPGAs, SRL16 primitive
(16x1 bit, output addressable shift register) lend themselves well for implementing delay lines.

 5 RESULTS AND IMPROVEMENTS
 As the performance and resource requirements are mainly defined by the Filter Core, Table

1. summarizes these parameters of this given sub-module for different Xilinx families, using a 9 TAP,
a 25 TAP and a 49 TAP filter configuration. The maximal filter window size – assuming the
previously derived video size – is 7x7 in Spartan-3, 9x9 in Virtex-4 and 11x11 in Virtex-5 FPGAs.
During implementation, synthesis was done with Synplicity Premier 8.6, while mapping and place-
and-route were performed by Xilinx ISE 8.2.

As cells themselves have low latency, using the architecture for recursive filtering is quite
straightforward. In this case two additional 2:1 multiplexers are required; one at the filter value input
of the cells and one at the input of the delay line The multiplexer at the filter value input are fed by
the Filter Value Generator and the filter value of the median cell, while the one at the delay line is fed
by the output of the Line Buffer and the output RGB of the Delay Line.

183

Tab. 1 FPGA resource requirements

TAP FPGA LUTs FFs Clock
frequency

Virtex-5 397 179 250 MHz

Virtex-4 606 146 180 MHz
3X3

9
Spartan-3 629 147 100 MHz

Virtex-5 1160 487 200 MHz

Virtex-4 1764 407 140 MHz
5x5

25
Spartan-3 1759 402 95 MHz

Virtex-5 2060 845 170 MHz

Virtex-4 3374 805 125 MHz
7x7

49
Spartan-3 3477 833 75 MHz

 6 CONCLUSIONS
Implementation results show that in the newest FPGAs real-time processing of standard

resolution video signals can be achieved using relatively large filter kernels, while in cost-effective
FPGA families the kernel size is more limited; however a 7x7 TAP filter is still possible. Higher
resolution videos are not typical in embedded systems, therefore the presented architecture
completely satisfy the preliminary requirements. The relatively small footprint of the design enables
implementation using low-cost, small FPGAs.

REFERENCES
[1] LEE, C. L., JEN, C. 1993. Binary Partition Algorithms and VLSI Architectures for Median

and Rank Order Filtering, IEEE Transactions on signal processing, Vol. 41, No. 9.

[2] CHAKRABARTI, C., 1994. High Sample Rate Array Architectures for Median Filters, IEEE
Transactions on signal processing, Vol. 42, No. 3.

[3] CHAKRABARTI, C., WANG, L. 1994. Novel Sorting Network-Based Architectures for Rank
Order Filters, IEEE Transactions on VLSI, Vol. 2, No. 4.

[4] FEHÉR, B., SZEDŐ, G. Noise Filter Applications on Reconfigurable Hardware, PQACT ’98
International Conference on Parallel Architectures and Compilation Techniques, Workshop on
Reconfigurable Computing, Paris, France, 13th October 1998., pp 95-100

Reviewer: prof. Ing. Jiří Tůma, CSc., VŠB – Technical University of Ostrava

184

	 1 INTRODUCTION
	 2 PREVIOUS WORK
	 3 FILTERING IN 2D
	 4 PROPOSED ARCHITECTURE
	 4.1 Input Front-end
	 4.2 Filter Core
	 4.2. Delay Line
	 5 RESULTS AND IMPROVEMENTS
	 6 CONCLUSIONS

