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ZVÝŠENÍ ROBUSTNOSTI METODY EXAKTNÍ LINEARIZACE 

Abstract 
The exact linearization method via feedback consists in transforming a nonlinear system into a 

linear one using a state feedback. The linearized system obtained is in a non-robust form whose 
dynamics is completely different from that of the original system. So, the use of feedback 
linearization requires the complete knowledge of the nonlinear system. It is possible that the 
controlled system become unstable in the presence of significant model uncertainties. To improve 
robustness, it may be necessary to modify the exact linearization controller. In this paper, some 
robustification techniques for the exact linearization method are discussed and an example is 
presented, also. 

Abstrakt 
Metoda zpětnovazební exaktní linearizace spočívá v transformaci nelineárního systému na 

lineární systém použitím stavové zpětné vazby. Získaný linearizovaný systém je nerobustní, jehož 
dynamika je naprosto odlišná od původního systému. Proto využití zpětnovazební linearizace 
vyžaduje plnou znalost vlastností nelineárního systému. Existence významných neurčitostí v modelu 
může způsobit, že řízený systém bude nestabilní. Pro zlepšení robustnosti může být nezbytné upravit 
regulátor exaktní linearizace. Tento příspěvek se zabývá metodami pro zvýšení robustnosti při 
exaktní linearizaci s uvedením příkladů. 

 1 INTRODUCTION 
In the last years, significant advances have been made in the development of ideas such as 

feedback linearizing techniques. The problem of exact linearization via feedback and diffeo-
morphism consists in transforming a nonlinear system into a linear one using a state feedback and a 
coordinate transformation of the state [Isidori 1995].  

Practical implementation of such controllers requires consideration of various sources of 
uncertainties such as: modelling errors, computation errors, unknown payloads, measurement noise, 
etc.  It is possible that the controlled system become unstable in the presence of significant model 
uncertainties. To improve robustness, it may be necessary to modify the exact linearization controller 
to guarantee its robustness. 

Several techniques from linear and nonlinear control theory have been applied to the problem 
of robust feedback linearization: Lyapunov redesign method, sliding modes, the  approach, etc. 
Here, we present two techniques that can be applied to obtain a robust controller for the feedback 
linearization. First, Glover-McFarlane 

∞H

∞H  design is presented with the goal of increasing robustness 
of existing controllers without significantly compromising performance. The second approach is the 
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two-degree of freedom controller design. In these methodologies, it is possible to separate the 
designing task of meeting performance specifications and robustness into two modular steps. 

The paper it is organized as follows: in the next section the feedback linearizing technique is 
shortly presented. Then, the application of the two robustifying methods it is approached. Finally, 
some numerical simulation results for a handling crane model are presented. 

 2 THE FEEDBACK LINEARIZING METHOD 
The nonlinear system that we consider is described by equations of the following kind: 
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in which f(x) , ( )g x  are smooth vector fields. 

The exact linearization via feedback and diffeomorphism consists in transforming the 
nonlinear system (1) into a linear one using a state feedback and a coordinate transformation of the 
systems state. This can be done introducing the Lie derivative of a function  along a 
vector field 
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 Definition [Isidori 1995]. A nonlinear system of the form (1) has a relative degree  at a point r
0x  if: 

 ( ) 0k
g fL L h x =   (3) 

for all  and for all 1k r< − x  in a neighborhood of 0x  , and 1 0( ) 0r
g fL L h x− ≠ .  

Proposition. Let be the nonlinear system of the form (1) having the relative degree r  at a 
point 0x . Then, the state feedback  

 1

1 1( ) ( )
( ) ( )

r
fr

g f

u a x v L h x
b x L L h x− v⎡ ⎤= − + = − +⎡ ⎤⎣ ⎦ ⎣ ⎦     (4) 

transform the nonlinear system in a system having the input-output behaviour identical with those of 
a linear one with the transfer function (see Fig. 1): 
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Fig. 1 The linearized model (L.M.) 

On the linear system thus obtained one impose a feedback control of the form: 

 ( ) ( 1)
0 1 1

r
r rv c y y c y c y −

−= − − − −& L       (6) 

then, the obtained system has a linear input-output behavior, described by the following transfer 
function 
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The design parameters are computed using a pole-placement design technique. 

 3 GLOVER-MCFARLANE CONTROL DESIGN 
We consider the structure of the control loop shown in Fig. 2, where is implemented the 

control law (6) and rK  is the robustifying controller ( sG  is the nominal shaped plant). 

 
Fig. 2 The control loop 

 In this design, the model uncertainties are included as perturbations to the nominal model, 
and robustness is guaranteed by ensuring that the stability specifications are satisfied for the worst-
case uncertainty. 

 Let  be the normalized coprime factorization of the nominal shaped plant.  /sG N M=

 The normalized coprime factor uncertainty characterization is given by 

 :N
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The following steps yield the optimal controller that assumes a state-space (A, B, C) available 
for the transfer function sG : 

1. Obtain Z by solving the algebraic Riccati equation (ARE) 

 0T TAZ ZA ZC CZ BB+ − + =              (9) 

2. Obtain X by solving the ARE 

 0T TAX XA XBB X C C+ − + =            (10) 

3. Compute the maximum possible ε  for the given nominal shaped plant 

                (11) 1/ 2
max (1 ( ))XZ −= +ε ρ

where ρ  denotes the spectral radius. Hence, in this design scheme there is no need for an explicit 
characterization of uncertainty. The method detects and solves for the worst-case scenario. 

4. The robustness margin ε  is chosen to be slightly less than maxε . Let 1/=γ ε . 

5. The state-space realization of the robustifying controller rK  is given by 
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An important feature of this algorithm [McFarlane and Glover 1992] is that the loop transfer 
functions before and after robustification are not significantly different. 

 4 TWO-DEGREE OF FREEDOM CONTROLLER 
Now, we consider the overall control system represented by the configuration of Fig.3, with a 

two-parameter compensator (R, S, T). Our design objective is to specify the two-parameter 
compensator to achieve the following two aims: 

1. The compensator can robustly stabilize nominal model G0(s) against the uncertainty 
 by specifying R(s) and S(s). G∆

 M(s)

S(s)

R 1− (s)  G(s) = G 0 (s)+ ∆ G(s)  T(s) 
  r 

      Two degree of freedom controller 

 y m + e 

- 

2. The transfer function from r to y is as close to the desired model M(s) as possible via 
an adequately chosen T(s). 

 

 

 u w y e1+
 

 
- 

  

Fig. 3 The overall control system 

Here, the nominal model  can be chosen as the transfer function of the linearized model 
(5). 

0 ( )G s

The algorithm for designing the controller parameters (R, S, T) can be found in [Popescu and 
Bobasu 2001]. 

Remark: In this method it is necessary to evaluate the norm of the uncertainty. 

 5 A WORKING EXAMPLE 
 The Glover McFarlane control design it is applied for a handling crane model (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The schema of the handling crane 

The dynamical model consists of two nonlinear differential equations, both of order two 
[Bobasu et al. 2005]: 
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   (13)  

The control purpose is the regulation of the output: 
 siny x h= + θ     (14) 

In equations (13), (14) we have: F – the force developed by the translation motor, m1 – the 
mass of chariot, m2 – the mass of the load; b – the viscosity friction coefficient for the chariot, c – the 
friction coefficient opposing to the oscillation of the load, h – the height, g – the acceleration due to 
the gravity, J – the inertia moment, θ  - the angular position, x – the position of the chariot, y – the 
position of the load. 

 The chariot is displaced using an induction motor and a reduction gear. The force F will be 
considered the input variable for the nonlinear model (13). Choosing,  

 ( ) ( ) ( ) ( ), , ,Tx t t x t x t⎡ ⎤= ⎣ ⎦
& &θ θ  , u F=            (15) 

the mathematical model (13), (14) is described in the state space by the following equations  

 
.
( ) ( ) ( )x t f x g x u= +         (16) 

 ( ) siny h x x h= = + θ  (17) 

where the expressions for ( )f x  and ( )g x  are given in [Bobasu et al. 2005]. 

The system has relative degree 2r = . In this situation, the state feedback: 

 2
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transforms the system (16), (17) into a system whose input-output behavior is identical to that of a 
double integrator. 

On the linear system thus obtained one impose a feedback control of the form: 

 0 1( )refv c y y c y= − − &     (19) 

then, the obtained system has a linear input-output behavior, described by the following transfer 
function 

 0
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In order to test the performances of the obtained nonlinear controller, the following nominal 
handling crane parameters are used: 

2
1 2200 , 500 , 9.81 /

1000 / , 10 / , 6
m kg m kg g m s
b Ns m c Ns rad h m
= = =
= = =

 

The design parameters are computed using a pole-placement design technique: 

0 10.0625, 0.375c c= =  

Fig. 5 presents the load position evolution for the nonlinear controlled system. 
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Fig. 5 Time evolution of the load position 

Then, applying the Glover-McFarlane algorithm described in Section 3, the controller rK  was 
computed and the load position evolution is presented in Fig. 6: 

 
Fig. 6 Time evolution of the load position 

 6 CONCLUSIONS 
In this paper, two robustification techniques for the exact linearization method were discussed. 

First, Glover-McFarlane ∞H  design was presented with the goal of increasing robustness of existing 
controllers without significantly compromising performance. The second approach was the two-
degree of freedom controller design that allows separating the designing task of meeting performance 
specifications and robustness into two modular steps. Finally, an example was presented. 
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