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Abstract 
This paper deals with the design of a nonlinear control law for a hydraulic servomechanism. 

The servomechanism is in fact a double-acting double-ended piston actuator with a ¾ servovalve. In 
order to design the nonlinear controller, the mathematical model of the servomechanism is achieved. 
The nonlinear control law is designed using the feedback linearizing technique. Some numerical 
simulations are provided in order to reveal the performances and the behavior of the controlled 
system. 

Abstrakt 
Příspěvek popisuje návrh nelineárního řízení pro hydraulický servomechanismu. 

Servomechanismus je dvojčinný, s obousměrnou pístnicí a třípolohovým, čtyřcestným servoventilem. 
Pro návrh nelineárního regulátoru bylo nutno určit matematický model servomechanismu. Nelineární 
řízení bylo navrženo metodou exaktní linearizace. Pro určení výkonu a chování řízeného systému 
byly provedeny číslicové simulace. 

 1 INTRODUCTION 
The classical methods of hydraulic control are based on a linearized description of the plant 

around a fixed reference position. In many practical applications, however, these linear controllers are 
sufficient in terms of accuracy and dynamic performance and hence are still very common in 
industry. But the hydraulic plants exhibit significant nonlinearities and therefore, an increase in the 
performance of the closed-loop can only be achieved by controllers that take into account the 
nonlinear nature of the system [Richard & Outbib 1995, Bobasu 2003]. In the literature, linear 
controllers either with an adaptation mechanism or robustly designed are often suggested as a means 
of coping with these nonlinearities. Apart from these design methods based on the linear model of the 
hydraulic system various works considering nonlinear control approaches have been proposed. 

In the last years, significant advances have been made in the development of ideas such as 
feedback linearizing techniques. The problem of exact linearization via feedback and diffeo-
morphism consists in transforming a nonlinear system into a linear one using a state feedback and a 
coordinate transformation of the state [Fossard & Normand-Cyrot 1993, Isidori 1995].  

In this paper, we will consider the basic configuration of a double-acting double-ended piston 
actuator with a ¾ servovalve. The servovalve is composed by a symmetrical double-nozzle and a 
torque-motor driven flapper for the first stage and a sliding spool for the second stage. The nonlinear 
mathematical model of the hydraulic servo-system is achieved, considering the case of neglecting 
valve’s dynamics and taking into account the loss of the flow between chambers of the actuator. This 
model is represented by four differential equations. Next, by using the feedback linearizing technique, 
a nonlinear control law for the servomechanism is obtained. The control goal is the regulation of the 
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position of the piston. This nonlinear control method provides an alternative solution to existing 
classical linear methods. For the implementation of the control law we suppose that all states are 
measurable. Some numerical simulation results for the controlled system are also presented. 

2 THEORETICAL FUNDAMENTS 
The nonlinear system that we consider is described in state space by equations of the 

following kind: 
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The exact linearization via feedback and diffeomorphism consists in transforming the 
nonlinear system (1) into a linear one using a state feedback and a coordinate transformation of the 
systems state. We do not develop the details of input-output linearization techniques (for details see 
[Isidori 1995]) but directly show the application on the hydraulic servomechanism. This can be done 
introducing the Lie derivative of a function  along a vector field  h( [)( fxf =
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Definition. [Isidori 1995]. A multivariable nonlinear system of the form (1) has a relative degree 
 at a point  if: }
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is nonsingular at . 
Remark 1: For the single input – single output (SISO) nonlinear systems, the two conditions 
regarding the relative degree r from Definition 2.1 become: 

1)   for all k , and for 0) =xL 1− x  in a neighborhood of . 0x
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Remark 2: Let be a SISO nonlinear system of the form (1), which has the relative degree r at a point 
. The state feedback: 
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transforms the nonlinear system into a system, whose input-output behaviour is the same with a linear 
system having the transfer function: 
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Theorem. [Isidori 1995]. Let be the nonlinear system of the form (1). Suppose the matrix  has 
rank . Then, the State Space Exact Linearization Problem is solvable if: 
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1) for each , the distribution  has constant dimension near ; 
2) the distribution G  has dimension ; 
3) for each , the distribution G  is involutive. ≤≤ ni i

3 THE NONLINEAR MODEL AND CONTROL LAW DESIGN 
The nonlinear mathematical model of the hydraulic servo-system (presented in Fig.1) is 

achieved, considering the case of neglecting valve’s dynamics and taking into account the loss of the 
flow between chambers of the actuator. In this simplified model, the spool displacement is 
proportional to the input signal.  
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Fig. 1 The structure of the hydraulic servo-system 

The nonlinear model is represented by next differential equations: 
for  0>u
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where: 
u - is the input voltage to servovalve [V], 

 - nozzle flow coefficient [-], 
B - bulk-modulus of fluid [ ] , 
ps - supply pressure , 
ρ  - is the mass density of the hydraulic fluid [ ], 3/ mKg

21, pp  - pressure in left and right cylinder chambers, respectively [ ]2/ mN , 
V - enclosed volume on each side of actuator where z = 0 [ ]3m , 
S - effective area of double-ended piston [ ]2m  
m - piston mass [Kg], 
f - equivalent viscous friction force coefficient [ ]mNs / , 
k - equivalent aerodynamic elastic force coefficient , [ ]mN /
F - disturbance force input on actuator [N], 



ku - is a proportional coefficient (spool displacement / input signal) , [ ]Vm /
z - the position of the piston [m]. 

Choosing as vector of state variables ( )[ ]tvtzt ,,ptpxT , 21= , the state space representation 
(5) can be written as a linear-analytical form: 
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in which smooth vector fields f(x) and g(x) have the following expressions: 

( )

( )










−

−

−

=

ppa
v

V
a

V
a

xf

215

2












−−

+

vaza

Sz
v
Sz
v

43

2

    (7) 

( )













0> ( )













=

a

xg
−

+

−

0
0

21

1

Sz
p

Sz
pps

−

1

V
a

V

 for u ;













−

−
+

0
0

21

11

SzV
pp

SzV
pa

s 0<u













−= axg  for   (8) 

where: 
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 Using the Lie derivatives we have 
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- respectively for u < 0: 
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Then, the state feedback: 
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( )( )
transforms the system (5) into a system whose input-output behavior is identical to that of a triple 
integrator 
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On the linear system thus obtained one impose a feedback control of the form: 
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The design parameters are computed using a pole-placement design technique. 

4   SIMULATION RESULTS 
In order to test the performances and the behavior of the obtained nonlinear controller, 

extensive computer simulations were performed in Matlab / Simulink using the following hydraulic 
servomechanism parameters: 

VmkmNkmV
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ds
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The simulations were performed using the nonlinear model (6), (7), (8) with the above values 
of the parameters. The nonlinear control law (16)-(18), (20) is implemented and a step reference 
profile is used for the position of the piston. The simulation results are presented in Fig. 2-5. 

 
Fig. 2 Reference versus output ( )           Fig. 3 Evolution of pressures ( u ) 0>u 0>
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Fig. 4 Reference versus output ( )         Fig. 5 Time profiles of pressures ( ) 0<u 0<u

0>

0<

Fig. 2 shows the time profiles of the reference and of the output (the position of the piston) for 
the case u > 0. From this figure it can be seen that the response of z is quite good (a small settling 
time and a very small overshoot). Fig. 3 depicts the evolution of the pressures (for u ).  

For the case u , the simulation results are represented in Fig. 4 and Fig. 5. In Fig. 4 the 
reference profile and the output z are shown. Fig. 5 depicts the time evolution of the pressures. 

5     CONCLUDING REMARKS 
In this paper a nonlinear linearizing control technique for hydraulic servomechanism was 

presented. The design of the control law uses the exact feedback input-output linearization [Fossard 
& Normand-Cyrot 1993, Isidori 1995]. The mathematical models of hydraulic servomechanism are 
studied in order to try the implementation of the nonlinear control laws. Using monovariable 
modelling and control design, exact linearizing controllers are obtained. Computer simulation is 
performed in order to test and validate the proposed nonlinear controllers. From the simulation results 
it can be seen a good behavior of the controlled systems. Further research will take into consideration 
the cases when some states and/or parameters are unknown. 
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