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Abstract 
The paper presents new sliding mode algorithms for control of rigid robot manipulators. We 

consider a variable structure scheme which ensures the reaching phase elimination, guarantees 
insensitivity of the manipulator with respect to its model uncertainty and external disturbance from 
the very beginning of the proposed control action, and assures fast, monotonic error convergence to 
zero. We explicitly consider the velocity and acceleration constraints of each link. The proposed 
control algorithms employ the time-varying switching lines that pass through the origin of the error 
state space. The lines are selected in such a way that the ITAE index is minimised. 

Abstrakt 
Příspěvek prezentuje nové algoritmy pracující v klouzavých módech pro řízení tuhých 

robotických manipulátorů. Je uvažováno řízení s proměnnou strukturou, které eliminuje počáteční 
fázi pohybu k přepínací křivce, zaručuje necitlivost manipulátoru s ohledem na neurčitost modelu a 
externí poruchy generováním akčního zásahu, který od počátku zaručuje rychlou monotónní 
konvergenci odchylky k nule. Jsou explicitně uvažována omezení na rychlost a zrychlení každého 
členu. Navrhovaný řídicí algoritmus využívá časově proměnné přepínací křivky, které procházejí 
počátkem stavového prostoru pro odchylku. Přepínací křivky jsou zvoleny tak, aby bylo 
minimalizováno kritérium ITAE. 

 1 INTRODUCTION 
In recent years much of the research in the area of control systems theory focused on 

the design of a discontinuous feedback which switches the structure of the system according to 
the evolution of its state vector. This technique, usually called sliding mode control, provides an 
effective and robust means of controlling nonlinear plants [3], [4], [6]. The main advantage of this 
technique is that once the system state reaches a sliding surface, the system dynamics remain 
insensitive to a class of parameter variations and disturbances. 

However, robust tracking is assured only after the system state hits the sliding surface, 
i.e. the robustness is not guaranteed during the reaching phase. Provided a conventional time-
invariant sliding plane is considered, the advantage of the sliding mode control, namely the desired 
dynamic behaviour of the system, is not obtained for some time from the beginning of its motion. 
Furthermore, usually for the given initial conditions there is an essential trade-off between the short 
reaching phase and the fast system response in the sliding phase. In order to overcome these problems 
the idea of the time-varying switching lines applied to the sliding mode control of the second order 
time-varying, nonlinear systems has been introduced. 
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In this paper, a new sliding mode algorithms for control of rigid robot manipulators are 
presented. The velocity and acceleration constraints of each link are considered. The proposed control 
algorithms employ the time-varying switching lines that pass through the origin of the error state 
space. The lines are characterized by the parameters representing their velocities of rotation. 
The main contribution of this work is the procedure for the optimal, in the sense of the ITAE index, 
selection of these parameters. The switching lines are designed to eliminate the reaching phase, 
assure insensitivity of the system to the external disturbance and parameter uncertainties from 
the very beginning of control action, and provide fast, monotonic error convergence to zero. 

 2 PROBLEM FORMULATION 
Let us consider the following dynamic equation of an n – link rigid robot manipulator 

 ( ) ( ) ( ) ( ) = ( ),+ , + + t tD q q C q q q G q d u&& & &  (1) 

where q(t) = [q1(t) q2(t) … qn(t)]T is the vector of n joint positions, u(t) is the n×1 vector of joint 
control inputs, D(q) is the n×n symmetric, positive definite inertia matrix,  is the n×n matrix 

of Coriolis and centripetal coefficients, defined such that 

( , )C q q&

( ) ( )2 ,−D q C q q& &  is a skew–symmetric 
matrix, G(q) is the n×1 vector of gravitational torques, d(t) is a n×1 disturbance vector. It is assumed 
that for all t ≥ t0 disturbances are bounded | di(t) | < di max, where di(t) is the i th element of the vector 
d(t), and di max is a positive constant (i = 1, 2,…, n). The robot arm (1) is supposed to reach the final 
state qd = [qd1 qd2 … qdn]T. The system error is defined by the following vector 
e(t) = [e1(t) e2(t) … en(t)]T = q(t) – qd. Hence, we have ei (t) = qi (t) – qd i (i = 1, 2,…, n). In this paper 
it is assumed that at the initial time t = t0, the error and the error derivative of each link 

 0( ) const 0; ( ) 0.ie t e t0i= ≠ & =

t t

 (2) 

Clearly, the initial error equal to zero is a trivial case and it will not be discussed. 

Consider the time-varying straight switching lines that pass through the origin of the phase 
plane. Originally, the lines rotate with the constant velocities around the origin of the phase plane, 
then stop at the time instants tfi (i = 1, 2,…, n) when their slopes reach the predetermined values and 
remain fixed. Consequently, for t ≥ 0 the switching lines are described by the following equation 

 ( , ) where ( , ) ( ) + ( ) ( ),t t t= =0 &s e s e e c e  (3) 

where c(t) is a diagonal matrix such that c(t) = diag{c1(t), c2(t), …, cn (t)} and 
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where Ai are positive constants. Selection of these constants will be considered in the next section. 

 Taking into account the Lyapunov function V = ½ sTDs the control law of the following 
structure can be derived 
 [ ]( ) ( ) ( ) sgn( ),t t t= + − + − −u Cq G D c e c e C s γ s& & &  (5) 

where γ = diag{γ1, γ2,…, γn} and the condition γi ≥ di max is satisfied to ensure the stability of 
the sliding motion on the i th switching line (3). Another Lyapunov function which can be considered 
here is V = ½ sTs. Then the control law is obtained in the form 

 [ ]( ) ( ) ( ) sgn( ),t t t= + − + −u Cq G D c e c e Dζ s& & &  (6) 

where ζ = diag{ζ1, ζ2, …, ζn} with condition max max
1

,
n

i i k k
k

ζ b d
=

≥∑  where bik max is the greatest value of 

i,k th element of the inverse matrix of D. 
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 If at t = t0 the representative point of ith link belongs to the ith switching line and control 
signal (5) is applied, then for any time t∈〈0; tfi) the system dynamics is described by (3) with 
the initial conditions given in (2). Assuming, for the sake of clarity, that t0 = 0 we get the errors and 
their derivatives for the time interval t ∈〈0; tfi) 

 
2 2( ) (0) e ,i

i i
A te t e −=  (7)

 
2 2( ) (0) e .i

i i i
A te t A te −= −&  (8) 

In the second phase of the robot manipulator motion control, i.e. when the switching lines do 
not move, for any time t ≥ tfi we get the errors and their derivatives expressed by relations 

 ( )f f 2 2( ) (0) e ,i i i i
i i

c c A t Ae t e −
=  (9)

 ( )f f
f

2 2( ) (0) e .i i i i
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Notice that the errors described by (7) and (9) do not exhibit any overshoots. 

 3 SWITCHING LINES DESIGN 
In order to select the optimal switching line parameters Ai we will consider the following 

integral control quality criterion  

 
0
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Substituting (7) and (9) into this expression we obtain the criterion in the form 
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Moreover, calculating the derivatives dJi /dAi one can notice that the right-hand side of criterion (12) 
decreases with increasing Ai. Further in the paper, the considered criterion with velocity and 
acceleration constraints will be minimised. 

 3.1 Velocity constraints 
Let us consider the velocity constraint of each link given by the inequality 

 max( ) ,i ie t v≤&  (13) 

where vi max are arbitrary positive constants. The extreme values of the joint velocities expressed by 
(8) are achieved at the time instants m 1 iit = A  and they are equal to m( ) (0) ei i i ie t e A= −& . 

Further, we consider two cases: one when tmi < tfi and the other when tfi ≤ tmi. Some straightforward 
calculations lead to the conclusion that in the first case the maximum absolute value of the i th joint 
velocity is achieved at the tmi. Then the solution of the considered optimisation problem is 

 1 2 2
opt maxe (v

i i iA v e= 0) ,  (14) 
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assuming ( ) max f0 e .  In the second case, i.e. when ti i ie v c> fi ≤ tmi, for each link we get that 

the greatest joint velocity is given by the absolute value of ( )
2
f / 2

f f( ) 0 e .i iA
i i i i

ce t c e −= −  Since this 
expression contains the exponential function, another two sub-cases should be considered. The first 
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one takes place if ln (vi max / cfi | ei (0)| ) ≥ 0. This is equivalent to | ei(0)| ≤ vi max / cfi and then we get 
the optimal parameters  and the minimum value of criterion (12) is 2

opt
v
iA →∞ ( )2 2

opt f0 .v
i i iJ e c=  

The other sub-case, i.e. ( )max fln (0) 0i i iv c e <  yields ( )2
f max f2 ln (0) .i i i i iA c v c e≤ −  

Hence, in the interval ( ) ( max f max f0 ; ei i i ie v c v c∈ 〉i  the optimal solution 
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 3.2 Acceleration constraints 
In this section the following acceleration constraints are taken into account 

 max( ) ,i ie t a≤&&  (18) 

where aimax are arbitrary positive constants. It can be easily verified that for any time t ≥ 0 
the maximum values of the absolute  are achieved at the initial time t = 0 and they are equal to 
A

( )ie t&&

i |ei(0)|. Then the solutions of the optimisation problem are 
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 3.3 Minimisation of criterion Ji subject to velocity and acceleration constraints 
Now let us consider the situation when both the joint velocities and accelerations are limited 

simultaneously. The ith velocity cannot be greater than vi max and the maximum admissible 
accelerations are ai max. In order to select the optimal solutions of the minimisation of criterion (12) 
the results of sections 3.1 and 3.2 are used. Furthermore, two additional cases should be considered. 
First of them takes place when f max maei i ic a v≥ x.  Then the optimal values of the parameters are 
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Consequently, when ( ) 2
max max0 ei i ie v a≤  the minimum of criterion (12) is equal to 

 otherwise, i.e. for ( ) ( )opt optmin ,
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 On the other hand, if f max maei i ic a v< x,  then the optimal value of the i th switching line 
rate of rotation and further criterion (12) can be expressed as follows 
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where ( )max f max f; eB
i i i ie v c v c∈ i  are solutions of the equations [ ](0)i if e 3

opt opt 0.a v
i iA A= − =  They 

can be easily found using any standard numerical procedure (e.g. bisection method or regula falsi). 

The parameters Ai determined in this way ensure the optimal performance of the controlled 
robot arm described by (1) satisfying velocity and acceleration constraints given by (13) and (18). 

 4 SIMULATION EXAMPLE 
In order to verify the performance of the proposed sliding mode control algorithm a simulation 

test on the two degree-of-freedom planar robot with two revolute joints (see Fig.1) is conducted. 
The robot arm is described by the following dynamic equations 
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where  

( ) ( ) ( )2 2
11 2 1 2 1 2 2 2 1 2 22 cosD q m m l m l m l l q= + + + ,  

( ) ( )2
12 2 2 2 2 1 2 2cos .D q m l m l l q= +  

We assume that the lengths of the first and second links of the arm are l1 = 0.4 m, l2 = 0.3 m, 
and their masses are m1 = m2 = 1 kg, respectively. The robot arm is subject to the external 
disturbances d1(t) = 0.3 cos(10t) Nm and d2(t) = 0.4 cos(5t) Nm. The initial position is determined by 
e1(0) = π rad, and e2(0) = π/3 rad. The arm should reach its final position qd =[ π/4 rad  π/7 rad ]T. As 
the threshold values of velocity and acceleration of each link we take vi max = 2 rad/s and 
ai max = 4 rad/s2 (i = 1,2). 
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Fig. 1. Two degree-of-freedom robot arm Fig. 2. Error of the both links 
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Figures 2, 3 and 4 show the error and its first and second derivatives of each link of the arm, 
respectively, under control law (5) with γ = diag{0.3 Nm, 0.4 Nm }. Then due to proposed control 
method the optimal switching line parameters are 1 opt 1.1072A ≈  s–2, 2 opt 3.8197A ≈  s–2 and the lines 

stop rotating at the moments t s, f1 0.9032≈ f2 0.5236t ≈ s. It can be seen from the figures that 
constraints vi max = 2 rad/s, ai max = 4 rad/s2 (i = 1, 2) are satisfied, and the errors converge to zero 
monotonically. 
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Fig. 3. Velocity of the links Fig. 4. Acceleration of the links 

 5 CONCLUSIONS 
In this paper new sliding mode algorithms for control of rigid robot manipulators have been 

proposed. The algorithms employ the time-varying switching lines which rotate with constant 
velocities around the origin of the error state space. The designed switching lines guarantee that 
the reaching phase is eliminated, the joint errors converge to zero monotonically and the insensitivity 
of the manipulator with respect to its model uncertainty and external disturbance from the very 
beginning of the proposed control action are ensured. The switching lines rate of rotation is chosen in 
such a way that the ITAE index is minimised and the velocity and acceleration constraints of each 
link are satisfied. To verify the performance of the proposed control algorithms a simulation test on 
the two degree-of-freedom planar robot with two revolute joints has been conducted. 
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