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NUMERICAL SIMULATION OF THE FLUID INSTABILITIES IN THE GAP
BETWEEN TWO ROTATING CYLINDERS

NUMERICKA SIMULACE NESTABILIT PROUDENI V MEZERE
MEZI DVEMA ROTUJICIMI VALCI

Abstrakt

Clanek prezentuje vysledky numerické simulace Taylor-Couetteho proudéni mezi proti sobé
rotujicimi valci, které autor ziskal experimentalnim a matematickym vyzkumem. Byly simulovany
vSechny druhy proudéni pozorované na fyzikalnim experimentu, to znamena nejen ¢asoveé nezavislé
druhy proudéni jako je Couetteho proudéni a Taylorovy viry, ale také ¢asoveé zavislé typy proudéni
jako je vinové proudéni, modulované vlnové proudéni a dva druhy spirdlového proudéni. Pro
numerickou simulaci byl pouzit matematicky model zaloZzeny na Navier-Stokesovych rovnicich a
rovnici kontinuity a metoda kone¢nych objemi

Abstract

The article presents the results of numerical simulation of Taylor-Couette flow at counter-
rotating concentric cylinders, which the author dealt with in his experimental and numerical investi-
gation. There were all kinds of flow observed during the physical experiment simulated. That means
not only time independent kinds of the flow as Couette flow and Taylor vortices, but also time de-
pendent types of the flow as wavy vortex flow, modulated wavy vortex flow and two kinds of spiral
flows. Mathematical model of the flow based on the Navier-Stokes and continuity equations as well
as numerical method of finite volumes had been used for those simulations.

1 Introduction to problem and current state

The paper concerns the examining of hydrodynamic instabilities rising at Taylor-Couette flow
between two concentric cylinders, where both inner and outer cylinder are rotating, however angle
speed of the inner cylinder has to be bigger than the angle speed of the outer cylinder. Under such
conditions the flow is instable even when using an ideal liquid. At some circumstances, there can
appear secondary flow characterizing this instability [1]. Flow of the real liquid between cylinders is
a modification of Couette’s flow caused by rotation of inner cylinder. At the outer standing cylinder
the toroid vortices rise. These ones were named after G. 1. Taylor, who described this problem in
1923. He also experimentally showed and gave reasons even for their theoretical appearance. There
exist other modifications of Taylor’s vortices, which can be seen in the figure. 1.1.
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Fig. 1.1 Modification of Taylor vortexes

2 The regimes of Taylor-Couette flow

Generally, most of the authors divide the Taylor-Couette flow into the following flow regimes,
where Taylor’s number T as a criterion for change from one instable state to another is defined as:

T=QI_Rld iZTCl=4l,3 [1]
v R,

where: 2, — angular velocity of the inner cylinder, R;- radius of the inner cylinder, d-width of the gap,
v — kinematic viscosity

U Taylor vortices — TVF
The formation of non-periodical instabilities of the toroid axisymmetric Taylor vortex struc-
ture is given with a critical value of T,. This instability will appear, if the following condition is ful-
filled: T >T, >41.3.

U Wavy vortex flow — WVF
This flow appears after another increasing of rotation speed of inner cylinder that also means
T. If the condition T,>T,; is fulfiled, the new wave moving vortices in a circumferential direction

start to rise. Critical number T, lies approximately in interval T, ~ (1,1+100).T.; and it depends
both, on the geometry of the gap and on the properties of the liquid.

U Modulated wavy vortex flow — MWVF
At this state modulation of wave movement of vortices appears. The new second frequency of
azimutal waves modulates the vortices. At this state gradually happens that toroid vortices extend and
narrow down in a circumferential direction.

U Chaos - CHA
The chaotic regime is defined for Taylor number lying in interval T = (100+1000).T,,. It

strongly depends on the ratio of radii | and experimental technique (if the rotation speed of the cylin-
der increases very quickly or very slow and equally, various structure of flow can be obtained). Addi-
tional T number increasing causes the rising of turbulent effects and disturbing the vortices.

These states of the flow can be observed only when the outer cylinder is standing. In case of
counter-rotating or co-rotating two cylinders, different regimes of the flow can appear.
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3 Numerical simulation of the flow instabilities [3]

Numerical simulations were based on experimental measuring carried out on the experimental
apparatus in a laboratory of the department of hydromechanics and hydraulic systems. Firstly the
laboratory conditions had been completed, i.e. the temperature and normal atmospheric pressure were
measured. Before starting the experiment measuring it was necessary to mix the oil with aluminum
powder. The oil mixing always took 3 minutes with angular velocity 500 min™ of the inner cylinder.
Thereafter the experiment was stopped to let the vortices disappear. Then the own measuring was
started. The results of experimental measurement as boundary and physical conditions for later nu-
merical simulation of the flow instabilities were used.

frame

electromotor no.1

Fig. 3.1 Experimental apparatus

3.1 Physical properties of the used liquid (oil)
O density of oil p =876 kgm™
O temperature of oil T =22,5°C

O kinematic viscosity v = 8,29x10” m’s™

3.2 Mathematical model of the flow
The flow between two cylinders has been classified as transitional flow between laminar and turbu-
lent regime. That is why the laminar model of the flow had been applied. The LES model gave similar
results, nevertheless it was more time consuming. Classical RANS models, e.g. k-¢ model and others, are
not suitable because of putting down the vortex structures, additionally the vortices were disappear after
getting convergency. In the simulations the method of finite volumes had been applied [4].

3.3 Computational grid
The structured equable grid including 140 000 cells in a preprocessor Gambit had been made.
Number of the cells in axial cross-section (see figure. 3.2) in 3D is following: direction i = 8 cells,
direction j = 40 cells.
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Gridl May 07, 2008
FLLENT 8.1 (3d, segregated, lam)

Fig. 3.2 Computational grid

3.4 Boundary conditions of the time dependent problem

The problem was solved as time dependent one with a time step At = 0,001s. The whole time
of numerical simulations was from 60 to 80 s. The boundary conditions of 3D region were defined as
follows (see tab. 3.1):

Boundary descri tion Description ir Fluent 6 Boundary cond tions
Endwall T, WALL rotation

Inner cylinder | WALL rotation

Outer cylinder T, WALL rotation

Cross-section I; INTERIOR -

Tab. 3.1 Boundaries of 3D region

4. Evaluation of 3D numerical simulations

Applying software FLUENT all six kinds of the flow gained by physical experiment were
successfully simulated. These kinds of the flow are the basic ones in the Taylor-Couette laminar sys-
tem. For better understanding of flow vortex structures in the gap between two cylinders all succes-
sive pictures are always presented in iso-surfaces of tangential velocity component #, and contours
of axial velocity component u, in axial cross-section [2].

I Regime of non-periodic flow

First basic regime simulated without any bigger troubles was a Couette flow. The region of
this flow existence lies under the stable curve. Therefore there should not exist any vortex structures.
This assumption is correct only for infinite cylinder length without endwalls of the cylinders. When
running a real experiment or numerical simulation, however, these ideal conditions are not realizable.
At first vortices rise near the endwall in the form of toroid vortices named Eckman vortices (see fig.
4.1 right). The middle of the region is free of the vortices structures.
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Fig. 4.1 Couette flow

The second case of the non-periodic successfully simulated flow was called Taylor’s vortex
flow. In the figure 4.2 there is iso-surface of tangential velocity component is showed for velocity u,
= 0,27 m/s. There it is seen the characteristic shape of the vortex rings in this regime. They never
change their shape and position in the region and are time independent. In the right figure 4.2 the
behaviour of axial velocity component u, in radial cross-section can be observed.
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Fig. 4.2 Taylor vortices

II Regimes of the periodic flow
The first periodic flow is so called wavy vortex flow. Iso-surface for u, = 0,3 m/s (fig. 4.3)
displays visible wavy oscillating movement in the circumferential direction. The number of the waves
in this direction can be read from the radial cross-section in the right part of the figure 4.3. The num-
ber of the floating waves is five. From the evaluation of axial velocity component there is noticed that
wavy movement is completely symmetric and there are no irregularities of the flow.
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Fig. 4.3 Wavy vortex flow
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Modulated wavy vortex flow was with great difficulties numerically simulated. In the fig. 4.4
the characteristic displacement of the circumferential wave peaks can be seen. That is the most im-
portant property for second modulation frequency that appears in this flow. For better understanding
the picture is filled in arrows placed in the peak wave amplitude. Iso — surface of the flow was created
for u, = 0,1 m/s. In the radial cross-section one can notice the irregular form of the waves. This fact is
again caused by second modulation frequency in the system. The number of the circumferential
waves is seven.

1570000
230000
bE e g
Ifrard 2
1 5 75a 01
i
Pile faadl
8, 200~ 1 GRa<0l
5. 288! ].4!0 o
i 18
2odu 8 28g-02
Eda Eataod
7 hra- 120
i3
:k}&’gj 1.990-02
ZHibad A pra-02
g Eie
o ¥ et
R ]
o =].45e-01
£ -0 148l
b e - L | =1 adia=i
‘? =L =2 07e-01
R+ 00 =F fe=01
1 12ma00 “Rdse-ti
—].2‘94-@0 a’?\r o1
<1 S0asad B
1 Eanann N 1o-0f -
14804 =3 32e=01

Contours of Aoial Vielocity (mig) (Time=2.21 02pe01) 03, 3006

Gontours of Tangartial Velocity (mis) (Timee2 21 0ag.01) (3, 2006 FLUENT 6.1 (30 sogragaten lahlnnayms'lsm\']

Ma )
FLLIENT 6.1 {3 sagegaied, Iam_‘{nmnmﬂ

Fig. 4.4 Modulated wavy vortex flow

Finally two kinds of spiral regimes were numerically simulated. First one was named the
simple spiral flow SPI characterized by spirals unrolled from bottom endwall. Second flow was
created from two independent opposite moving spirals. Iso-surfaces of both spiral flow variants are
showed in the figures 4.5 and 4.6. In both cases of the spiral flow the number of the spirals is very
easily recognizable and it is two. The spirals are axially symmetrical.
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Fig. 4.5 Spiral regime (SPI)
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Fig. 4.6 Spiral regime (SSPI)

Summary
The results of the numerical simulation, thanks to a model of DNS, proved the possibility of

solving even for such difficult nonlinear cases as for Taylor’s vortices and their higher modifications.
As for the numerical calculation generally the flow structure reaching was influenced by choice of
grid. From the visual point of view the excellent correspondence between simulations and experiment
was reached.

Reviewer: Prof. Ing. Jaroslav Janalik, CSc.
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